from __future__ import annotations from pydantic import model_validator # type: ignore from typing import Literal, ClassVar, Optional, Any, AsyncGenerator, List # NOTE: You must import Optional for late binding to work from datetime import datetime import inspect from . base import Agent, registry from .. message import Message from .. setup_logging import setup_logging logger = setup_logging() system_fact_check = f""" Launched on {datetime.now().isoformat()}. You are a professional resume fact checker. Your task is to identify any inaccuracies in the <|generated-resume|> based on the individual's <|context|> and <|resume|>. If there are inaccuracies, list them in a bullet point format. When answering queries, follow these steps: - Analyze the <|generated-resume|> to identify any discrepancies or inaccuracies which are not supported by the <|context|> and <|resume|>. - If there is information in the <|context|> or <|resume|> sections to enhance the answer, incorporate it seamlessly and refer to it using natural language instead of mentioning '<|context|>' (etc.) or quoting it directly. - Avoid phrases like 'According to the <|context|>' or similar references to the <|context|>, <|generated-resume|>, or <|resume|> tags. Do not generate a revised resume. """.strip() system_resume = f""" Launched on {datetime.now().isoformat()}. You are a hiring and job placing specialist. Your task is to answers about a resume and work history as it relates to a potential job. When answering queries, follow these steps: - Analyze the <|job_description|> and <|generated-resume|> to provide insights for the asked question. - If any financial information is requested, be sure to account for inflation. - If there is information in the <|context|>, <|job_description|>, <|generated-resume|>, or <|resume|> sections to enhance the answer, incorporate it seamlessly and refer to it using natural language instead of mentioning '<|job_description|>' (etc.) or quoting it directly. - Avoid phrases like 'According to the <|context|>' or similar references to the <|context|>, <|job_description|>, <|resume|>, or <|context|> tags. """.strip() class Resume(Agent): agent_type: Literal["resume"] = "resume" # type: ignore _agent_type: ClassVar[str] = agent_type # Add this for registration system_prompt:str = system_fact_check resume: str @model_validator(mode="after") def validate_resume(self): if not self.resume.strip(): raise ValueError("Resume content cannot be empty") return self async def prepare_message(self, message:Message) -> AsyncGenerator[Message, None]: logger.info(f"{self.agent_type} - {inspect.stack()[0].function}") if not self.context: raise ValueError("Context is not set for this agent.") async for message in super().prepare_message(message): if message.status != "done": yield message message.preamble["generated-resume"] = self.resume job_description_agent = self.context.get_agent("job_description") if not job_description_agent: raise ValueError("job_description agent does not exist") message.preamble["job_description"] = job_description_agent.job_description preamble_types = [f"<|{p}|>" for p in message.preamble.keys()] preamble_types_AND = " and ".join(preamble_types) preamble_types_OR = " or ".join(preamble_types) message.preamble["rules"] = f"""\ - Answer the question based on the information provided in the {preamble_types_AND} sections by incorporate it seamlessly and refer to it using natural language instead of mentioning {preamble_types_OR} or quoting it directly. - If there is no information in these sections, answer based on your knowledge, or use any available tools. - Avoid phrases like 'According to the {preamble_types[0]}' or similar references to the {preamble_types_OR}. """ fact_check_agent = self.context.get_agent(agent_type="fact_check") if fact_check_agent: message.preamble["question"] = "Respond to:" else: message.preamble["question"] = f"Fact check the <|generated-resume|> based on the <|resume|>{' and <|context|>' if 'context' in message.preamble else ''}." yield message return async def process_message(self, llm: Any, model: str, message:Message) -> AsyncGenerator[Message, None]: logger.info(f"{self.agent_type} - {inspect.stack()[0].function}") if not self.context: raise ValueError("Context is not set for this agent.") async for message in super().process_message(llm, model, message): if message.status != "done": yield message fact_check_agent = self.context.get_agent(agent_type="fact_check") if not fact_check_agent: # Switch agent from "Fact Check Generated Resume" mode # to "Answer Questions about Generated Resume" self.system_prompt = system_resume # Instantiate the "resume" agent, and seed (or reset) its conversation # with this message. fact_check_agent = self.context.get_or_create_agent(agent_type="fact_check", facts=message.response) first_fact_check_message = message.copy() first_fact_check_message.prompt = "Fact check the generated resume." fact_check_agent.conversation.add(first_fact_check_message) message.response = "Resume fact checked." # Return the final message yield message return # Register the base agent registry.register(Resume._agent_type, Resume)