# Intel Media FFMPEG Transcode Container This project hosts a container demonstrating the use of ffmpeg using GPU offload for transcode operations. # Using Build the container: ```bash docker build . -t intel-media-ffmpeg ``` Run the container: ```bash docker run \ --rm \ --device=/dev/dri \ -it \ intel-media-ffmpeg ``` # Usage examples Download stream: ```bash mkdir media cd media wget https://fate-suite.libav.org/h264-conformance/AUD_MW_E.264 cd .. ``` **NOTE:** In each of the following, if you have a multi-card host system you may need to change the qsv_device used by changing QSV_DEVICE to whichever node is connected to your hardware. You can find out the paths via: ``` ls -l /dev/dri/by-path/pci-*$(lspci | grep Intel.*Graphics | cut -d " " -f1)* ``` On my system, my Intel graphics adapter is /dev/dri/renderD129, so I use: ``` export QSV_DEVICE=/dev/dri/renderD129 ``` ## Decode H264 video decode and save as raw file: ### Connect to container ```bash QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} docker run \ --rm \ --device=/dev/dri \ --volume $(pwd)/media:/media \ -it \ intel-media-ffmpeg \ ffmpeg -hwaccel qsv -qsv_device ${QSV_DEVICE} \ -c:v h264_qsv -i /media/AUD_MW_E.264 \ -vf hwdownload,format=nv12 -pix_fmt yuv420p \ /media/AUD_MW.yuv ``` ### Encode Encode a 10 frames of 720p raw input as H264 with 5Mbps using VBR mode: ```bash QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} docker run \ --rm \ --device=/dev/dri \ --volume $(pwd)/media:/media \ -it \ intel-media-ffmpeg \ ffmpeg -loglevel debug -init_hw_device qsv=hw \ -filter_hw_device hw -f rawvideo -pix_fmt \ yuv420p -s:v 176x144 -i /media/AUD_MW.yuv -vf \ hwupload=extra_hw_frames=64,format=qsv \ -c:v h264_qsv -b:v 5M -frames:v 10 \ -y /media/AUD_MW_E.h264 ``` ### Transcode H264 decode && H265 encode with 5Mbps using VBR ```bash QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} docker run \ --rm \ --device=/dev/dri \ --volume $(pwd)/media:/media \ -it \ intel-media-ffmpeg \ ffmpeg -hwaccel qsv -qsv_device ${QSV_DEVICE} \ -c:v h264_qsv -i /media/AUD_MW_E.264 \ -c:v hevc_qsv -b:v 5M AUD_MW_E.hevc ``` 1:N transcoding ```bash QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} docker run \ --rm \ --device=/dev/dri \ --volume $(pwd)/media:/media \ -it \ intel-media-ffmpeg \ ffmpeg -hwaccel qsv -qsv_device ${QSV_DEVICE} \ -c:v h264_qsv -i /media/AUD_MW_E.264 \ -filter_complex "split=2[s1][s2]; \ [s1]scale_qsv=1280:720[o1]; \ [s2]vpp_qsv=framerate=60[o2]" \ -map [o1] -c:v h264_qsv -b:v 5M /media/5M.mp4 \ -map [o2] -c:v h264_qsv -b:v 4M /media/4M60FPS.h264 ``` ## Developing The Dockerfile itself is constructed from re-usable snippets, located in the templates/ directory, and can be regenerated by running: ```bash scripts/build-dockerfile ``` The above script uses environment substitution to stamp version information within the created Dockerfile. The files which declare the environment variables are in **SOLUTION** and **MANIFEST**. After joining the template/* pieces together, the file **Dockerfile.solution** is then added to the Dockerfile with environment substitution. ## SOLUTION Solution specific definitions: CONTAINER_IMAGE is used as the container tag name OS_DISTRO is used as the base OS distribution. Possible values: ubuntu OS_RELEASE is used as the OS version. Possible values: disco, eoan ## MANIFEST The version of MANIFEST is created by the set of Agama packages from the Agama repository and name-mangling them to be a VERSION declaration: For example: libgl1-mesa-glx_19.0.1-agama-109_amd64.deb is changed to: LIBGL1_MESA_GLX_VERSION=19.0.1-agama-109 The script you can use to recreate the OS_RELEASE defined in SOLUTION is: NOTE: This only works on the Ubuntu releases. ```bash AGAMA_VERSION=169 . SOLUTION echo "AGAMA_VERSION=${AGAMA_VERSION}" > MANIFEST wget -q -O - \ https://osgc.jf.intel.com/packages/agama/ubuntu/dists/${OS_RELEASE}/main/binary-amd64/Packages.bz2 | bunzip2 | sed -nE 's/^(Package|Version): (.*)/\2/p' | paste -s -d' \n' | while read package version rest; do package=$(echo $package | sed -E -e s#-#_#g -e 's#(.*)#\U\1#g')_VERSION echo $package=$version done | grep ${AGAMA_VERSION}\$ >> MANIFEST ``` This allows the Dockerfile templates to then version pin Agama packages: ```Dockerfile RUN apt-get install -y libgl1-mesa-glx=$LIBGL1_MESA_GLX_VERSION ``` The `scripts/build-dockerfile` loads MANIFEST, which defines LIBGL1_MESA_GLX_VERSION. That is then subsituted for the version in the above Dockerfile snippet when being placed into the main Dockerfile. # Tagging If the build succeeds, we want to be able to tag the git project as well as corresponding Docker images with the appropriate Agama tag: ```bash . MANIFEST ; git tag -f agama-${AGAMA_VERSION} ```