Added more effects to test things out.

This commit is contained in:
James Ketr 2025-09-01 18:55:35 -07:00
parent 35dd49e4ac
commit fb0ce3f203
2 changed files with 150 additions and 66 deletions

View File

@ -58,7 +58,7 @@ from aiortc import (
MediaStreamTrack,
)
from logger import logger
from synthetic_media import create_synthetic_tracks
from synthetic_media import create_synthetic_tracks, AnimatedVideoTrack
# import debug_aioice
@ -1065,9 +1065,29 @@ async def main():
async def on_peer_removed(peer: Peer):
print(f"Peer removed: {peer.peer_name}")
# Remove any video tracks from this peer from our synthetic video track
if "video" in client.local_tracks:
synthetic_video_track = client.local_tracks["video"]
if isinstance(synthetic_video_track, AnimatedVideoTrack):
# We need to identify and remove tracks from this specific peer
# Since we don't have a direct mapping, we'll need to track this differently
# For now, this is a placeholder - we might need to enhance the peer tracking
logger.info(
f"Peer {peer.peer_name} removed - may need to clean up video tracks"
)
async def on_track_received(peer: Peer, track: MediaStreamTrack):
print(f"Received {track.kind} track from {peer.peer_name}")
# If it's a video track, attach it to our synthetic video track for edge detection
if track.kind == "video" and "video" in client.local_tracks:
synthetic_video_track = client.local_tracks["video"]
if isinstance(synthetic_video_track, AnimatedVideoTrack):
synthetic_video_track.add_remote_video_track(track)
logger.info(
f"Attached remote video track from {peer.peer_name} to synthetic video track"
)
client.on_peer_added = on_peer_added
client.on_peer_removed = on_peer_removed
client.on_track_received = on_track_received

View File

@ -9,23 +9,26 @@ import numpy as np
import cv2
import fractions
import time
import random
from typing import TypedDict
from aiortc import MediaStreamTrack
from av import VideoFrame, AudioFrame
from logger import logger
class BounceEvent(TypedDict):
"""Type definition for bounce events"""
type: str
start_time: float
end_time: float
start_sample: int
end_sample: int
class AnimatedVideoTrack(MediaStreamTrack):
"""
Synthetic video track that generates animated content with a bouncing ball.
Ported from JavaScript createAnimatedVideoTrack function.
Can also composite remote video tracks with edge detection overlay.
Remote video tracks are processed through Canny edge detection and blended
with the synthetic ball animation.
"""
kind = "video"
@ -42,6 +45,9 @@ class AnimatedVideoTrack(MediaStreamTrack):
self.height = height
self.name = name
self.audio_track = audio_track # Reference to the audio track
self.remote_video_tracks: list[
MediaStreamTrack
] = [] # Store remote video tracks
# Generate color from name hash (similar to JavaScript nameToColor)
self.ball_color = (
@ -49,13 +55,18 @@ class AnimatedVideoTrack(MediaStreamTrack):
) # Default green
# Ball properties
ball_radius = min(width, height) * 0.06
self.ball = {
"x": width / 2,
"y": height / 2,
"radius": min(width, height) * 0.06,
"x": random.uniform(ball_radius, width - ball_radius),
"y": random.uniform(ball_radius, height - ball_radius),
"radius": ball_radius,
"speed_mps": 0.5, # Speed in meters per second (frame width = 1 meter)
"direction_x": 1.0, # Direction vector x component (-1 to 1)
"direction_y": 0.6, # Direction vector y component (-1 to 1)
"direction_x": random.uniform(
-1.0, 1.0
), # Random direction x component (-1 to 1)
"direction_y": random.uniform(
-1.0, 1.0
), # Random direction y component (-1 to 1)
}
self.frame_count = 0
@ -67,6 +78,18 @@ class AnimatedVideoTrack(MediaStreamTrack):
"""Set the ball speed in meters per second"""
self.ball["speed_mps"] = speed_mps
def add_remote_video_track(self, track: MediaStreamTrack):
"""Add a remote video track to be composited with edge detection"""
if track.kind == "video":
self.remote_video_tracks.append(track)
logger.info(f"Added remote video track: {track}")
def remove_remote_video_track(self, track: MediaStreamTrack):
"""Remove a remote video track"""
if track in self.remote_video_tracks:
self.remote_video_tracks.remove(track)
logger.info(f"Removed remote video track: {track}")
def _calculate_velocity_components(self) -> tuple[float, float]:
"""
Calculate dx and dy velocity components based on speed in meters per second.
@ -151,6 +174,37 @@ class AnimatedVideoTrack(MediaStreamTrack):
# Create black background
frame_array = np.zeros((self.height, self.width, 3), dtype=np.uint8)
# Process remote video tracks with edge detection
for track in self.remote_video_tracks:
try:
# Get the latest frame from the remote track (non-blocking)
remote_frame = await track.recv()
if remote_frame and isinstance(remote_frame, VideoFrame):
# Convert to numpy array
img: np.ndarray = remote_frame.to_ndarray(format="bgr24")
# Apply edge detection
edges = cv2.Canny(img, 100, 200)
img_edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
# Resize to match our canvas size if needed
if img_edges.shape[:2] != (self.height, self.width):
img_edges = cv2.resize(img_edges, (self.width, self.height))
# Blend with existing frame (additive blend for edge detection overlay)
frame_array = cv2.addWeighted(
frame_array.astype(np.uint8),
0.7,
img_edges.astype(np.uint8),
0.3,
0,
)
except Exception as e:
# If we can't get a frame from this track, continue with others
logger.debug(f"Could not get frame from remote track: {e}")
continue
# Calculate velocity components based on current speed
dx, dy = self._calculate_velocity_components()
@ -170,6 +224,7 @@ class AnimatedVideoTrack(MediaStreamTrack):
# Trigger bounce sound if a bounce occurred
if bounce_occurred and self.audio_track:
logger.info("Video: Bounce detected, triggering audio event")
self.audio_track.add_bounce_event("bounce")
# Keep ball in bounds
@ -208,7 +263,7 @@ class AnimatedVideoTrack(MediaStreamTrack):
)
# Convert to VideoFrame
frame = VideoFrame.from_ndarray(frame_array, format="bgr24")
frame = VideoFrame.from_ndarray(frame_array.astype(np.uint8), format="bgr24")
frame.pts = pts
frame.time_base = fractions.Fraction(time_base).limit_denominator(1000000)
@ -217,84 +272,93 @@ class AnimatedVideoTrack(MediaStreamTrack):
class SyntheticAudioTrack(MediaStreamTrack):
"""
Synthetic audio track that generates audio including bounce sounds.
Originally a silent audio track, now enhanced to generate synthetic audio effects.
"""
kind = "audio"
def __init__(self):
super().__init__()
self.sample_rate = 48000
self.samples_per_frame = 960 # 20ms at 48kHz
self.bounce_queue: list[BounceEvent] = [] # Queue of bounce events to process
self.bounce_duration = 0.1 # 100ms bounce sound duration
self.bounce_amplitude = 0.3 # Amplitude of bounce sound
self.samples_per_frame = 960
self._samples_generated = 0
self._active_bounces: list[BounceEvent] = [] # List of active bounce events
def add_bounce_event(self, bounce_type: str = "bounce"):
"""Add a bounce event to the audio queue"""
current_time = time.time()
self.bounce_queue.append(
{
"type": bounce_type,
"start_time": current_time,
"end_time": current_time + self.bounce_duration,
}
"""Add a bounce event"""
bounce_duration_samples = int(0.2 * self.sample_rate) # 200ms
# Add new bounce to the list (they can overlap)
bounce_event: BounceEvent = {
"start_sample": self._samples_generated,
"end_sample": self._samples_generated + bounce_duration_samples,
"type": bounce_type,
}
self._active_bounces.append(bounce_event)
logger.info(
f"Bounce event added - start: {bounce_event['start_sample']}, end: {bounce_event['end_sample']}"
)
def _generate_bounce_sound(self, t: float) -> float:
"""Generate a simple bounce sound using a decaying sine wave"""
# Simple bounce sound: combination of two frequencies with decay
freq1 = 800 # Primary frequency
freq2 = 1200 # Secondary frequency
decay = np.exp(-t * 10) # Exponential decay
def _generate_bounce_sample(self, t: float) -> float:
"""Generate a single bounce sample at time t"""
if t < 0 or t > 0.2:
return 0.0
sound = (
np.sin(2 * np.pi * freq1 * t) * 0.7 + np.sin(2 * np.pi * freq2 * t) * 0.3
) * decay
return sound * self.bounce_amplitude
# Simple decay envelope
decay = np.exp(-t * 10)
async def next_timestamp(self):
"""Returns (pts, time_base) for 20ms audio frames at 48kHz"""
pts = int(time.time() * self.sample_rate)
# Clear, simple tone
freq = 400
sound = np.sin(2 * np.pi * freq * t) * decay
return sound * 0.9
async def next_timestamp(self) -> tuple[int, float]:
pts = self._samples_generated
time_base = 1 / self.sample_rate
return pts, time_base
async def recv(self):
"""Generate audio frames with bounce sounds"""
pts, time_base = await self.next_timestamp()
current_time = time.time()
# Create audio data
samples = np.zeros((self.samples_per_frame,), dtype=np.float32)
# Check for active bounce events and generate sounds
active_bounces: list[BounceEvent] = []
for bounce in self.bounce_queue:
if current_time < bounce["end_time"]:
# Calculate time within the bounce sound
t = current_time - bounce["start_time"]
if t >= 0:
# Generate bounce sound for this time frame
for i in range(self.samples_per_frame):
sample_time = t + (i / self.sample_rate)
if sample_time <= self.bounce_duration:
samples[i] += self._generate_bounce_sound(sample_time)
active_bounces.append(bounce)
# Generate samples for this frame
active_bounce_count = 0
for i in range(self.samples_per_frame):
current_sample = self._samples_generated + i
sample_value = 0.0
# Keep only active bounces
self.bounce_queue = active_bounces
# Check all active bounces for this sample
for bounce in self._active_bounces:
if bounce["start_sample"] <= current_sample < bounce["end_sample"]:
# Calculate time within this bounce
sample_offset = current_sample - bounce["start_sample"]
t = sample_offset / self.sample_rate
# Clamp samples to prevent distortion
# Add this bounce's contribution
sample_value += self._generate_bounce_sample(t)
active_bounce_count += 1
samples[i] = sample_value
# Clean up expired bounces
self._active_bounces: list[BounceEvent] = [
bounce
for bounce in self._active_bounces
if bounce["end_sample"] > self._samples_generated + self.samples_per_frame
]
if active_bounce_count > 0:
logger.info(
f"Generated audio with {len(self._active_bounces)} active bounces"
)
self._samples_generated += self.samples_per_frame
# Convert to audio frame
samples = np.clip(samples, -1.0, 1.0)
# Convert to s16 format (required by Opus encoder)
samples_s16 = (samples * 32767).astype(np.int16)
# Convert to AudioFrame
frame = AudioFrame.from_ndarray(
samples_s16.reshape(1, -1), format="s16", layout="mono"
samples_s16.reshape(1, -1), format="s16", layout="stereo"
)
frame.sample_rate = self.sample_rate
frame.pts = pts