2025-09-08 13:02:57 -07:00

1021 lines
41 KiB
Python

"""Streaming Whisper agent (bots/whisper) - OpenVINO Optimized for Intel Arc B580
Real-time speech transcription agent that processes incoming audio streams
and sends transcriptions as chat messages to the lobby.
Optimized for Intel Arc B580 GPU using OpenVINO inference engine.
"""
import asyncio
import numpy as np
import time
import threading
import os
import gc
import shutil
from queue import Queue, Empty
from typing import Dict, Optional, Callable, Awaitable, Any, cast, List, Union
from pathlib import Path
import numpy.typing as npt
from pydantic import BaseModel, Field, ConfigDict
# Core dependencies
import librosa
from shared.logger import logger
from aiortc import MediaStreamTrack
from aiortc.mediastreams import MediaStreamError
from av import AudioFrame
# Import shared models for chat functionality
import sys
sys.path.append(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
from shared.models import ChatMessageModel
from voicebot.models import Peer
# OpenVINO optimized imports
import openvino as ov
from optimum.intel.openvino import OVModelForSpeechSeq2Seq
from transformers import AutoProcessor
import torch
# Import quantization dependencies with error handling
try:
import nncf
from optimum.intel.openvino.quantization import InferRequestWrapper
QUANTIZATION_AVAILABLE = True
except ImportError as e:
logger.warning(f"Quantization libraries not available: {e}")
QUANTIZATION_AVAILABLE = False
# Type definitions
AudioArray = npt.NDArray[np.float32]
ModelConfig = Dict[str, Union[str, int, bool]]
CalibrationData = List[Dict[str, Any]]
class AudioQueueItem(BaseModel):
"""Audio data with timestamp for processing queue."""
model_config = ConfigDict(arbitrary_types_allowed=True)
audio: AudioArray = Field(..., description="Audio data as numpy array")
timestamp: float = Field(..., description="Timestamp when audio was captured")
class TranscriptionHistoryItem(BaseModel):
"""Transcription history item with metadata."""
model_config = ConfigDict(arbitrary_types_allowed=True)
message: str = Field(..., description="Transcribed text message")
timestamp: float = Field(..., description="When transcription was completed")
is_final: bool = Field(..., description="Whether this is final or streaming transcription")
class OpenVINOConfig(BaseModel):
"""OpenVINO configuration for Intel Arc B580 optimization."""
model_config = ConfigDict(arbitrary_types_allowed=True)
device: str = Field(default="GPU", description="Target device for inference")
cache_dir: str = Field(default="./ov_cache", description="Cache directory for compiled models")
enable_quantization: bool = Field(default=True, description="Enable INT8 quantization")
throughput_streams: int = Field(default=2, description="Number of inference streams")
max_threads: int = Field(default=8, description="Maximum number of threads")
def to_ov_config(self) -> ModelConfig:
"""Convert to OpenVINO configuration dictionary."""
return {
"CACHE_DIR": self.cache_dir,
"GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES",
"GPU_ENABLE_LOOP_UNROLLING": "YES",
"GPU_THROUGHPUT_STREAMS": str(self.throughput_streams),
"GPU_MAX_NUM_THREADS": str(self.max_threads),
"GPU_ENABLE_OPENCL_THROTTLING": "NO"
}
# Global configuration and constants
AGENT_NAME = "whisper"
AGENT_DESCRIPTION = "Real-time speech transcription (OpenVINO Whisper) - converts speech to text on Intel Arc B580"
SAMPLE_RATE = 16000 # Whisper expects 16kHz
CHUNK_DURATION_MS = 100 # Reduced latency - 100ms chunks
VAD_THRESHOLD = 0.01 # Voice activity detection threshold
MAX_SILENCE_FRAMES = 30 # 3 seconds of silence before stopping
model_ids = {
"Distil-Whisper": [
"distil-whisper/distil-large-v2",
"distil-whisper/distil-medium.en",
"distil-whisper/distil-small.en",
],
"Whisper": [
"openai/whisper-large-v3",
"openai/whisper-large-v2",
"openai/whisper-large",
"openai/whisper-medium",
"openai/whisper-small",
"openai/whisper-base",
"openai/whisper-tiny",
"openai/whisper-medium.en",
"openai/whisper-small.en",
"openai/whisper-base.en",
"openai/whisper-tiny.en",
],
}
# Global model configuration
_model_type = model_ids["Distil-Whisper"]
_model_id = _model_type[0] # Use distil-large-v2 for best quality
_ov_config = OpenVINOConfig()
def setup_intel_arc_environment() -> None:
"""Configure environment variables for optimal Intel Arc B580 performance."""
os.environ["OV_GPU_CACHE_MODEL"] = "1"
os.environ["OV_GPU_ENABLE_OPENCL_THROTTLING"] = "0"
os.environ["OV_GPU_DISABLE_WINOGRAD"] = "1"
logger.info("Intel Arc B580 environment variables configured")
class OpenVINOWhisperModel:
"""OpenVINO optimized Whisper model for Intel Arc B580."""
def __init__(self, model_id: str, config: OpenVINOConfig):
self.model_id = model_id
self.config = config
self.model_path = Path(model_id.replace('/', '_'))
self.quantized_model_path = Path(f"{self.model_path}_quantized")
self.processor: Optional[AutoProcessor] = None
self.ov_model: Optional[OVModelForSpeechSeq2Seq] = None
self.is_quantized = False
self._initialize_model()
def _initialize_model(self) -> None:
"""Initialize processor and OpenVINO model with robust error handling."""
logger.info(f"Initializing OpenVINO Whisper model: {self.model_id}")
try:
# Initialize processor
self.processor = AutoProcessor.from_pretrained(self.model_id)
logger.info("Whisper processor loaded successfully")
# Try to load quantized model first if it exists
if QUANTIZATION_AVAILABLE and self.config.enable_quantization and self.quantized_model_path.exists():
if self._try_load_quantized_model():
return
# Load or create FP16 model
if self.model_path.exists():
self._load_fp16_model()
else:
self._convert_model()
# Try quantization after model is loaded and compiled
if QUANTIZATION_AVAILABLE and self.config.enable_quantization and not self.is_quantized:
self._try_quantize_existing_model()
except Exception as e:
logger.error(f"Error initializing model: {e}")
# Fallback to basic conversion without quantization
self._fallback_initialization()
def _fallback_initialization(self) -> None:
"""Fallback initialization without quantization."""
logger.warning("Falling back to basic OpenVINO conversion without quantization")
try:
if not self.model_path.exists():
self._convert_model_basic()
self._load_fp16_model()
except Exception as e:
logger.error(f"Fallback initialization failed: {e}")
raise RuntimeError("Failed to initialize OpenVINO model") from e
def _convert_model(self) -> None:
"""Convert PyTorch model to OpenVINO format."""
logger.info(f"Converting {self.model_id} to OpenVINO format...")
try:
# Convert to OpenVINO with FP16 for Arc GPU
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
self.model_id,
ov_config=self.config.to_ov_config(),
export=True,
compile=False,
load_in_8bit=False
)
# Enable FP16 for Intel Arc performance
ov_model.half()
ov_model.save_pretrained(self.model_path)
logger.info("Model converted and saved in FP16 format")
# Load the converted model
self.ov_model = ov_model
self._compile_model()
except Exception as e:
logger.error(f"Model conversion failed: {e}")
raise
def _convert_model_basic(self) -> None:
"""Basic model conversion without advanced features."""
logger.info(f"Basic conversion of {self.model_id} to OpenVINO format...")
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
self.model_id,
export=True,
compile=False
)
ov_model.save_pretrained(self.model_path)
logger.info("Basic model conversion completed")
def _load_fp16_model(self) -> None:
"""Load existing FP16 OpenVINO model."""
logger.info("Loading existing FP16 OpenVINO model...")
try:
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
self.model_path,
ov_config=self.config.to_ov_config(),
compile=False
)
self._compile_model()
except Exception as e:
logger.error(f"Failed to load FP16 model: {e}")
# Try basic loading
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
self.model_path,
compile=False
)
self._compile_model()
def _try_load_quantized_model(self) -> bool:
"""Try to load existing quantized model."""
try:
logger.info("Loading existing INT8 quantized model...")
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
self.quantized_model_path,
ov_config=self.config.to_ov_config(),
compile=False
)
self._compile_model()
self.is_quantized = True
logger.info("Quantized model loaded successfully")
return True
except Exception as e:
logger.warning(f"Failed to load quantized model: {e}")
return False
def _try_quantize_existing_model(self) -> None:
"""Try to quantize the existing model after it's loaded."""
if not QUANTIZATION_AVAILABLE:
logger.info("Quantization libraries not available, skipping quantization")
return
if self.ov_model is None:
logger.warning("No model loaded, cannot quantize")
return
# Check if model components are available
if not hasattr(self.ov_model, 'encoder') or self.ov_model.encoder is None:
logger.warning("Model encoder not available, skipping quantization")
return
if not hasattr(self.ov_model, 'decoder_with_past') or self.ov_model.decoder_with_past is None:
logger.warning("Model decoder_with_past not available, skipping quantization")
return
try:
logger.info("Attempting to quantize compiled model...")
self._quantize_model_safe()
except Exception as e:
logger.warning(f"Quantization failed, continuing with FP16 model: {e}")
def _quantize_model_safe(self) -> None:
"""Safely quantize the model with extensive error handling."""
if self.quantized_model_path.exists():
logger.info("Quantized model already exists")
return
if self.ov_model is None:
raise RuntimeError("No model to quantize")
logger.info("Creating INT8 quantized model for Intel Arc B580...")
try:
# Collect calibration data with error handling
calibration_data = self._collect_calibration_data_safe()
if not calibration_data:
logger.warning("No calibration data collected, skipping quantization")
return
# Quantize encoder
if calibration_data.get('encoder'):
logger.info("Quantizing encoder...")
quantized_encoder = nncf.quantize(
self.ov_model.encoder.model,
nncf.Dataset(calibration_data['encoder']),
model_type=nncf.ModelType.TRANSFORMER,
subset_size=min(len(calibration_data['encoder']), 50)
)
else:
logger.warning("No encoder calibration data, copying original encoder")
quantized_encoder = self.ov_model.encoder.model
# Quantize decoder
if calibration_data.get('decoder'):
logger.info("Quantizing decoder with past...")
quantized_decoder = nncf.quantize(
self.ov_model.decoder_with_past.model,
nncf.Dataset(calibration_data['decoder']),
model_type=nncf.ModelType.TRANSFORMER,
subset_size=min(len(calibration_data['decoder']), 50)
)
else:
logger.warning("No decoder calibration data, copying original decoder")
quantized_decoder = self.ov_model.decoder_with_past.model
# Save quantized models
self.quantized_model_path.mkdir(parents=True, exist_ok=True)
ov.save_model(quantized_encoder, self.quantized_model_path / "openvino_encoder_model.xml")
ov.save_model(quantized_decoder, self.quantized_model_path / "openvino_decoder_with_past_model.xml")
# Copy remaining files
self._copy_model_files()
# Clean up
del quantized_encoder, quantized_decoder, calibration_data
gc.collect()
# Load quantized model
if self._try_load_quantized_model():
logger.info("Quantization completed successfully")
except Exception as e:
logger.error(f"Quantization failed: {e}")
# Clean up partial quantization
if self.quantized_model_path.exists():
shutil.rmtree(self.quantized_model_path, ignore_errors=True)
def _collect_calibration_data_safe(self, dataset_size: int = 20) -> Dict[str, CalibrationData]:
"""Safely collect calibration data with extensive error handling."""
if self.ov_model is None or self.processor is None:
return {}
logger.info(f"Collecting calibration data ({dataset_size} samples)...")
# Check model components
if not hasattr(self.ov_model, 'encoder') or self.ov_model.encoder is None:
logger.warning("Encoder not available for calibration")
return {}
if not hasattr(self.ov_model, 'decoder_with_past') or self.ov_model.decoder_with_past is None:
logger.warning("Decoder with past not available for calibration")
return {}
# Check if requests are available
if not hasattr(self.ov_model.encoder, 'request') or self.ov_model.encoder.request is None:
logger.warning("Encoder request not available for calibration")
return {}
if not hasattr(self.ov_model.decoder_with_past, 'request') or self.ov_model.decoder_with_past.request is None:
logger.warning("Decoder request not available for calibration")
return {}
# Setup data collection
original_encoder_request = self.ov_model.encoder.request
original_decoder_request = self.ov_model.decoder_with_past.request
encoder_data: CalibrationData = []
decoder_data: CalibrationData = []
try:
self.ov_model.encoder.request = InferRequestWrapper(original_encoder_request, encoder_data)
self.ov_model.decoder_with_past.request = InferRequestWrapper(original_decoder_request, decoder_data)
# Generate synthetic calibration data instead of loading dataset
logger.info("Generating synthetic calibration data...")
for i in range(dataset_size):
try:
# Generate random audio similar to speech
duration = 2.0 + np.random.random() * 3.0 # 2-5 seconds
synthetic_audio = np.random.randn(int(SAMPLE_RATE * duration)).astype(np.float32) * 0.1
input_features = self.processor(
synthetic_audio,
sampling_rate=SAMPLE_RATE,
return_tensors="pt"
).input_features
# Run inference to collect calibration data
_ = self.ov_model.generate(input_features, max_new_tokens=10)
if i % 5 == 0:
logger.debug(f"Generated calibration sample {i+1}/{dataset_size}")
except Exception as e:
logger.warning(f"Failed to generate calibration sample {i}: {e}")
continue
except Exception as e:
logger.error(f"Error during calibration data collection: {e}")
finally:
# Restore original requests
try:
self.ov_model.encoder.request = original_encoder_request
self.ov_model.decoder_with_past.request = original_decoder_request
except Exception as e:
logger.warning(f"Failed to restore original requests: {e}")
result = {}
if encoder_data:
result['encoder'] = encoder_data
logger.info(f"Collected {len(encoder_data)} encoder calibration samples")
if decoder_data:
result['decoder'] = decoder_data
logger.info(f"Collected {len(decoder_data)} decoder calibration samples")
return result
def _copy_model_files(self) -> None:
"""Copy necessary model files for quantized model."""
try:
# Copy config and first-step decoder
if (self.model_path / "config.json").exists():
shutil.copy(self.model_path / "config.json", self.quantized_model_path / "config.json")
decoder_xml = self.model_path / "openvino_decoder_model.xml"
decoder_bin = self.model_path / "openvino_decoder_model.bin"
if decoder_xml.exists():
shutil.copy(decoder_xml, self.quantized_model_path / "openvino_decoder_model.xml")
if decoder_bin.exists():
shutil.copy(decoder_bin, self.quantized_model_path / "openvino_decoder_model.bin")
except Exception as e:
logger.warning(f"Failed to copy some model files: {e}")
def _compile_model(self) -> None:
"""Compile model for Intel Arc B580."""
if self.ov_model is None:
raise RuntimeError("Model not loaded")
logger.info("Compiling model for Intel Arc B580...")
try:
self.ov_model.to(self.config.device)
self.ov_model.compile()
# Warmup for optimal performance
self._warmup_model()
logger.info("Model compiled and warmed up successfully")
except Exception as e:
logger.warning(f"Failed to compile for GPU, trying CPU: {e}")
# Fallback to CPU
try:
self.ov_model.to("CPU")
self.ov_model.compile()
self._warmup_model()
logger.info("Model compiled for CPU successfully")
except Exception as cpu_e:
logger.error(f"Failed to compile for CPU as well: {cpu_e}")
raise
def _warmup_model(self) -> None:
"""Warmup model for consistent GPU performance."""
if self.ov_model is None or self.processor is None:
return
try:
logger.info("Warming up model...")
dummy_audio = np.random.randn(SAMPLE_RATE).astype(np.float32) # 1 second
dummy_features = self.processor(
dummy_audio,
sampling_rate=SAMPLE_RATE,
return_tensors="pt"
).input_features
# Run warmup iterations
for i in range(3):
_ = self.ov_model.generate(dummy_features, max_new_tokens=10)
if i == 0:
logger.debug("First warmup iteration completed")
except Exception as e:
logger.warning(f"Model warmup failed: {e}")
def generate(self, input_features: torch.Tensor) -> torch.Tensor:
"""Generate transcription from input features."""
if self.ov_model is None:
raise RuntimeError("Model not initialized")
return self.ov_model.generate(
input_features,
max_new_tokens=128,
num_beams=1, # Greedy decoding for speed
do_sample=False
)
def decode(self, token_ids: torch.Tensor, skip_special_tokens: bool = True) -> List[str]:
"""Decode token IDs to text."""
if self.processor is None:
raise RuntimeError("Processor not initialized")
return self.processor.batch_decode(token_ids, skip_special_tokens=skip_special_tokens)
# Global model instance with deferred loading
_whisper_model: Optional[OpenVINOWhisperModel] = None
_audio_processors: Dict[str, "OptimizedAudioProcessor"] = {}
_send_chat_func: Optional[Callable[[str], Awaitable[None]]] = None
def _ensure_model_loaded() -> OpenVINOWhisperModel:
"""Ensure the global model is loaded."""
global _whisper_model
if _whisper_model is None:
setup_intel_arc_environment()
logger.info(f"Loading OpenVINO Whisper model: {_model_id}")
_whisper_model = OpenVINOWhisperModel(_model_id, _ov_config)
logger.info("OpenVINO Whisper model loaded successfully")
return _whisper_model
def extract_input_features(audio_array: AudioArray, sampling_rate: int) -> torch.Tensor:
"""Extract input features from audio array optimized for OpenVINO."""
model = _ensure_model_loaded()
if model.processor is None:
raise RuntimeError("Processor not initialized")
processor_output = model.processor(
audio_array,
sampling_rate=sampling_rate,
return_tensors="pt",
)
return processor_output.input_features
class OptimizedAudioProcessor:
"""Optimized audio processor for Intel Arc B580 with reduced latency."""
def __init__(self, peer_name: str, send_chat_func: Callable[[str], Awaitable[None]]):
self.peer_name = peer_name
self.send_chat_func = send_chat_func
self.sample_rate = SAMPLE_RATE
# Optimized buffering parameters
self.chunk_size = int(self.sample_rate * CHUNK_DURATION_MS / 1000) # 100ms chunks
self.buffer_size = self.chunk_size * 50 # 5 seconds max
# Circular buffer for zero-copy operations
self.audio_buffer = np.zeros(self.buffer_size, dtype=np.float32)
self.write_ptr = 0
self.read_ptr = 0
# Voice Activity Detection
self.vad_threshold = VAD_THRESHOLD
self.silence_frames = 0
self.max_silence_frames = MAX_SILENCE_FRAMES
# Processing state
self.current_phrase_audio = np.array([], dtype=np.float32)
self.transcription_history: List[TranscriptionHistoryItem] = []
self.last_activity_time = time.time()
# Async processing
self.processing_queue: asyncio.Queue[AudioQueueItem] = asyncio.Queue(maxsize=10)
self.is_running = True
# Start async processing task
try:
self.main_loop = asyncio.get_running_loop()
asyncio.create_task(self._async_processing_loop())
logger.info(f"Started async processing for {self.peer_name}")
except RuntimeError:
# Fallback to thread-based processing
self.main_loop = None
self.processor_thread = threading.Thread(target=self._thread_processing_loop, daemon=True)
self.processor_thread.start()
logger.warning(f"Using thread-based processing for {self.peer_name}")
logger.info(f"OptimizedAudioProcessor initialized for {self.peer_name}")
def add_audio_data(self, audio_data: AudioArray) -> None:
"""Add audio data with Voice Activity Detection and circular buffering."""
if not self.is_running or len(audio_data) == 0:
return
# Voice Activity Detection
energy = np.sqrt(np.mean(audio_data**2))
has_speech = energy > self.vad_threshold
if not has_speech:
self.silence_frames += 1
if self.silence_frames > self.max_silence_frames:
# Clear current phrase on long silence
if len(self.current_phrase_audio) > 0:
self._queue_final_transcription()
return
else:
self.silence_frames = 0
self.last_activity_time = time.time()
# Add to circular buffer (zero-copy when possible)
self._add_to_circular_buffer(audio_data)
# Check if we should process
if self._available_samples() >= self.chunk_size:
self._queue_for_processing()
def _add_to_circular_buffer(self, audio_data: AudioArray) -> None:
"""Add data to circular buffer efficiently."""
chunk_len = len(audio_data)
if self.write_ptr + chunk_len <= self.buffer_size:
# Simple case - no wraparound
self.audio_buffer[self.write_ptr:self.write_ptr + chunk_len] = audio_data
else:
# Wraparound case
first_part = self.buffer_size - self.write_ptr
self.audio_buffer[self.write_ptr:] = audio_data[:first_part]
self.audio_buffer[:chunk_len - first_part] = audio_data[first_part:]
self.write_ptr = (self.write_ptr + chunk_len) % self.buffer_size
def _available_samples(self) -> int:
"""Calculate available samples in circular buffer."""
if self.write_ptr >= self.read_ptr:
return self.write_ptr - self.read_ptr
else:
return self.buffer_size - self.read_ptr + self.write_ptr
def _extract_chunk(self, size: int) -> AudioArray:
"""Extract chunk from circular buffer."""
if self.read_ptr + size <= self.buffer_size:
chunk = self.audio_buffer[self.read_ptr:self.read_ptr + size].copy()
else:
first_part = self.buffer_size - self.read_ptr
chunk = np.concatenate([
self.audio_buffer[self.read_ptr:],
self.audio_buffer[:size - first_part]
])
self.read_ptr = (self.read_ptr + size) % self.buffer_size
return chunk.astype(np.float32)
def _queue_for_processing(self) -> None:
"""Queue audio chunk for processing."""
available = self._available_samples()
if available < self.chunk_size:
return
# Extract chunk for processing
chunk = self._extract_chunk(self.chunk_size)
# Create queue item
queue_item = AudioQueueItem(audio=chunk, timestamp=time.time())
# Queue for processing
if self.main_loop:
try:
self.processing_queue.put_nowait(queue_item)
except asyncio.QueueFull:
logger.warning(f"Processing queue full for {self.peer_name}, dropping chunk")
else:
# Thread-based fallback
try:
threading_queue = getattr(self, '_threading_queue', None)
if threading_queue:
threading_queue.put_nowait(queue_item)
except:
logger.warning(f"Threading queue issue for {self.peer_name}")
def _queue_final_transcription(self) -> None:
"""Queue final transcription of current phrase."""
if len(self.current_phrase_audio) > self.sample_rate * 0.5: # At least 0.5 seconds
if self.main_loop:
asyncio.create_task(self._transcribe_and_send(self.current_phrase_audio.copy(), is_final=True))
self.current_phrase_audio = np.array([], dtype=np.float32)
async def _async_processing_loop(self) -> None:
"""Async processing loop for audio chunks."""
logger.info(f"Started async processing loop for {self.peer_name}")
while self.is_running:
try:
# Get audio chunk
audio_item = await asyncio.wait_for(self.processing_queue.get(), timeout=1.0)
# Add to current phrase
self.current_phrase_audio = np.concatenate([self.current_phrase_audio, audio_item.audio])
# Check if we should transcribe
phrase_duration = len(self.current_phrase_audio) / self.sample_rate
if phrase_duration >= 1.0: # Transcribe every 1 second
await self._transcribe_and_send(self.current_phrase_audio.copy(), is_final=False)
except asyncio.TimeoutError:
# Check for final transcription on timeout
if len(self.current_phrase_audio) > 0 and time.time() - self.last_activity_time > 2.0:
await self._transcribe_and_send(self.current_phrase_audio.copy(), is_final=True)
self.current_phrase_audio = np.array([], dtype=np.float32)
except Exception as e:
logger.error(f"Error in async processing loop for {self.peer_name}: {e}")
logger.info(f"Async processing loop ended for {self.peer_name}")
def _thread_processing_loop(self) -> None:
"""Thread-based processing loop fallback."""
self._threading_queue: Queue[AudioQueueItem] = Queue(maxsize=10)
logger.info(f"Started thread processing loop for {self.peer_name}")
while self.is_running:
try:
audio_item = self._threading_queue.get(timeout=1.0)
# Add to current phrase
self.current_phrase_audio = np.concatenate([self.current_phrase_audio, audio_item.audio])
# Check if we should transcribe
phrase_duration = len(self.current_phrase_audio) / self.sample_rate
if phrase_duration >= 1.0:
if self.main_loop:
asyncio.run_coroutine_threadsafe(
self._transcribe_and_send(self.current_phrase_audio.copy(), is_final=False),
self.main_loop
)
except Empty:
# Check for final transcription
if len(self.current_phrase_audio) > 0 and time.time() - self.last_activity_time > 2.0:
if self.main_loop:
asyncio.run_coroutine_threadsafe(
self._transcribe_and_send(self.current_phrase_audio.copy(), is_final=True),
self.main_loop
)
self.current_phrase_audio = np.array([], dtype=np.float32)
except Exception as e:
logger.error(f"Error in thread processing loop for {self.peer_name}: {e}")
async def _transcribe_and_send(self, audio_array: AudioArray, is_final: bool) -> None:
"""Transcribe audio using OpenVINO optimized model."""
transcription_start = time.time()
transcription_type = "final" if is_final else "streaming"
try:
audio_duration = len(audio_array) / self.sample_rate
# Skip very short audio
if audio_duration < 0.3:
logger.debug(f"Skipping {transcription_type} transcription: too short ({audio_duration:.2f}s)")
return
# Audio quality check
audio_rms = np.sqrt(np.mean(audio_array**2))
if audio_rms < 0.001:
logger.debug(f"Skipping {transcription_type} transcription: too quiet (RMS: {audio_rms:.6f})")
return
logger.info(f"🎬 OpenVINO transcription ({transcription_type}) started: {audio_duration:.2f}s, RMS: {audio_rms:.4f}")
# Extract features for OpenVINO
input_features = extract_input_features(audio_array, self.sample_rate)
# GPU inference with OpenVINO
model = _ensure_model_loaded()
predicted_ids = model.generate(input_features)
# Decode results
transcription = model.decode(predicted_ids, skip_special_tokens=True)
text = transcription[0].strip() if transcription else ""
transcription_time = time.time() - transcription_start
if text and len(text.split()) >= 2:
# Create message with timing
status_marker = "" if is_final else "🎤"
type_marker = "" if is_final else " [streaming]"
timing_info = f" (🚀 {transcription_time:.2f}s)"
message = f"{status_marker} {self.peer_name}{type_marker}: {text}{timing_info}"
# Avoid duplicates
if not self._is_duplicate(text):
await self.send_chat_func(message)
# Update history
self.transcription_history.append(TranscriptionHistoryItem(
message=message,
timestamp=time.time(),
is_final=is_final
))
# Limit history
if len(self.transcription_history) > 10:
self.transcription_history.pop(0)
logger.info(f"✅ OpenVINO transcription ({transcription_type}): '{text}' ({transcription_time:.3f}s)")
else:
logger.debug(f"Skipping duplicate {transcription_type} transcription: '{text}'")
else:
logger.debug(f"Empty or too short transcription result: '{text}'")
except Exception as e:
logger.error(f"Error in OpenVINO {transcription_type} transcription: {e}", exc_info=True)
def _is_duplicate(self, text: str) -> bool:
"""Check if transcription is duplicate of recent ones."""
recent_texts = [h.message.split(': ', 1)[-1].split(' (🚀')[0]
for h in self.transcription_history[-3:]]
return text in recent_texts
def shutdown(self) -> None:
"""Shutdown the audio processor."""
logger.info(f"Shutting down OptimizedAudioProcessor for {self.peer_name}...")
self.is_running = False
# Final transcription if needed
if len(self.current_phrase_audio) > 0:
if self.main_loop:
asyncio.create_task(self._transcribe_and_send(self.current_phrase_audio.copy(), is_final=True))
# Cleanup thread if exists
if hasattr(self, 'processor_thread') and self.processor_thread.is_alive():
self.processor_thread.join(timeout=2.0)
logger.info(f"OptimizedAudioProcessor shutdown complete for {self.peer_name}")
async def handle_track_received(peer: Peer, track: MediaStreamTrack) -> None:
"""Handle incoming audio tracks from WebRTC peers."""
global _audio_processors, _send_chat_func
if track.kind != "audio":
logger.info(f"Ignoring non-audio track from {peer.peer_name}: {track.kind}")
return
# Create audio processor
if peer.peer_name not in _audio_processors:
if _send_chat_func is None:
logger.error(f"Cannot create processor for {peer.peer_name}: no send_chat_func")
return
logger.info(f"Creating OptimizedAudioProcessor for {peer.peer_name}")
_audio_processors[peer.peer_name] = OptimizedAudioProcessor(
peer_name=peer.peer_name,
send_chat_func=_send_chat_func
)
audio_processor = _audio_processors[peer.peer_name]
logger.info(f"Starting OpenVINO audio processing for {peer.peer_name}")
try:
frame_count = 0
while True:
try:
frame = await track.recv()
frame_count += 1
if frame_count % 100 == 0:
logger.debug(f"Received {frame_count} frames from {peer.peer_name}")
except MediaStreamError as e:
logger.info(f"Audio stream ended for {peer.peer_name}: {e}")
break
except Exception as e:
logger.error(f"Error receiving frame from {peer.peer_name}: {e}")
break
if isinstance(frame, AudioFrame):
try:
# Convert frame to numpy array
audio_data = frame.to_ndarray()
# Handle audio format conversion
audio_data = _process_audio_frame(audio_data, frame)
# Resample if needed
if frame.sample_rate != SAMPLE_RATE:
audio_data = _resample_audio(audio_data, frame.sample_rate, SAMPLE_RATE)
# Convert to float32
audio_data_float32 = cast(AudioArray, audio_data.astype(np.float32))
# Process with optimized processor
audio_processor.add_audio_data(audio_data_float32)
except Exception as e:
logger.error(f"Error processing audio frame for {peer.peer_name}: {e}")
continue
except Exception as e:
logger.error(f"Unexpected error in audio processing for {peer.peer_name}: {e}", exc_info=True)
finally:
cleanup_peer_processor(peer.peer_name)
def _process_audio_frame(audio_data: npt.NDArray[Any], frame: AudioFrame) -> npt.NDArray[np.float32]:
"""Process audio frame format conversion."""
# Handle stereo to mono conversion
if audio_data.ndim == 2:
if audio_data.shape[0] == 1:
audio_data = audio_data.squeeze(0)
else:
audio_data = np.mean(audio_data, axis=0 if audio_data.shape[0] > audio_data.shape[1] else 1)
# Normalize based on data type
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
elif audio_data.dtype == np.int32:
audio_data = audio_data.astype(np.float32) / 2147483648.0
return audio_data.astype(np.float32)
def _resample_audio(audio_data: npt.NDArray[np.float32], orig_sr: int, target_sr: int) -> npt.NDArray[np.float32]:
"""Resample audio efficiently."""
try:
# Use high-quality resampling for better results
resampled = librosa.resample(
audio_data.astype(np.float64),
orig_sr=orig_sr,
target_sr=target_sr,
res_type='kaiser_fast' # Good balance of quality and speed
)
return resampled.astype(np.float32)
except Exception as e:
logger.error(f"Resampling failed: {e}")
return audio_data
# Public API functions
def agent_info() -> Dict[str, str]:
return {"name": AGENT_NAME, "description": AGENT_DESCRIPTION, "has_media": "false"}
def create_agent_tracks(session_name: str) -> Dict[str, MediaStreamTrack]:
"""Whisper is not a media source - return no local tracks."""
return {}
async def handle_chat_message(
chat_message: ChatMessageModel,
send_message_func: Callable[[str], Awaitable[None]]
) -> Optional[str]:
"""Handle incoming chat messages."""
return None
async def on_track_received(peer: Peer, track: MediaStreamTrack) -> None:
"""Callback when a new track is received from a peer."""
await handle_track_received(peer, track)
def get_track_handler() -> Callable[[Peer, MediaStreamTrack], Awaitable[None]]:
"""Return the track handler function."""
return on_track_received
def bind_send_chat_function(send_chat_func: Callable[[str], Awaitable[None]]) -> None:
"""Bind the send chat function."""
global _send_chat_func, _audio_processors
logger.info("Binding send chat function to OpenVINO whisper agent")
_send_chat_func = send_chat_func
# Update existing processors
for peer_name, processor in _audio_processors.items():
processor.send_chat_func = send_chat_func
logger.debug(f"Updated processor for {peer_name} with new send chat function")
def cleanup_peer_processor(peer_name: str) -> None:
"""Clean up processor for disconnected peer."""
global _audio_processors
if peer_name in _audio_processors:
logger.info(f"Cleaning up processor for {peer_name}")
processor = _audio_processors[peer_name]
processor.shutdown()
del _audio_processors[peer_name]
logger.info(f"Processor cleanup complete for {peer_name}")
def get_active_processors() -> Dict[str, OptimizedAudioProcessor]:
"""Get active processors for debugging."""
return _audio_processors.copy()
def get_model_info() -> Dict[str, Any]:
"""Get information about the loaded model."""
model = _ensure_model_loaded()
return {
"model_id": _model_id,
"device": _ov_config.device,
"quantization_enabled": _ov_config.enable_quantization,
"is_quantized": model.is_quantized,
"sample_rate": SAMPLE_RATE,
"chunk_duration_ms": CHUNK_DURATION_MS
}