ai-voicebot/voicebot/bots/vibevoice.py

1123 lines
44 KiB
Python

import asyncio
import threading
import numpy as np
import time
import os
from typing import Dict, Optional, Callable, Awaitable, Any, Union
import numpy.typing as npt
# Core dependencies
import librosa
from shared.logger import logger
from aiortc import MediaStreamTrack
from aiortc.mediastreams import MediaStreamError
from av import AudioFrame, VideoFrame
import cv2
import fractions
from time import perf_counter
# Import shared models for chat functionality
import sys
sys.path.append(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
from shared.models import ChatMessageModel
from voicebot.models import Peer
# Defer importing the heavy TTS module until needed (lazy import).
# Tests and other code can monkeypatch these names on this module.
get_tts_engine = None
text_to_speech = None
# Global configuration and constants
AGENT_NAME = "Text To Speech Bot"
AGENT_DESCRIPTION = (
"Real-time speech generation- converts text to speech on Intel Arc B580"
)
SAMPLE_RATE = 16000 # Whisper expects 16kHz
_audio_data = None
# Track background processing threads per lobby to ensure only one worker runs
# per lobby session at a time.
_lobby_threads: Dict[str, Any] = {}
_lobby_threads_lock = threading.Lock()
# Per-lobby job metadata for status display
_lobby_jobs: Dict[str, Dict[str, Any]] = {}
class TTSModel:
"""TTS via MSFT VibeVoice"""
def __init__(
self,
peer_name: str,
send_chat_func: Callable[[ChatMessageModel], Awaitable[None]],
create_chat_message_func: Callable[[str, Optional[str]], ChatMessageModel],
):
self.peer_name = peer_name
self.send_chat_func = send_chat_func
self.create_chat_message_func = create_chat_message_func
_send_chat_func: Optional[Callable[[ChatMessageModel], Awaitable[None]]] = None
_create_chat_message_func: Optional[
Callable[[str, Optional[str]], ChatMessageModel]
] = None
class MediaClock:
"""Simple monotonic clock for media tracks."""
def __init__(self) -> None:
self.t0 = perf_counter()
def now(self) -> float:
return perf_counter() - self.t0
class WaveformVideoTrack(MediaStreamTrack):
"""Video track that renders a live waveform of the incoming audio.
The track reads the most-active `OptimizedAudioProcessor` in
`_audio_processors` and renders the last ~2s of its `current_phrase_audio`.
If no audio is available, the track will display a "No audio" message.
"""
kind = "video"
# Shared buffer for audio data
buffer: Dict[str, npt.NDArray[np.float32]] = {}
speech_status: Dict[str, Dict[str, Any]] = {}
def __init__(
self, session_name: str, width: int = 640, height: int = 480, fps: int = 15
) -> None:
super().__init__()
self.session_name = session_name
self.width = int(width)
self.height = int(height)
self.fps = int(fps)
self.clock = MediaClock()
self._next_frame_index = 0
async def next_timestamp(self) -> tuple[int, float]:
pts = int(self._next_frame_index * (1 / self.fps) * 90000)
time_base = 1 / 90000
return pts, time_base
async def recv(self) -> VideoFrame:
pts, _ = await self.next_timestamp()
# schedule frame according to clock
target_t = self._next_frame_index / self.fps
now = self.clock.now()
if target_t > now:
await asyncio.sleep(target_t - now)
self._next_frame_index += 1
frame_array: npt.NDArray[np.uint8] = np.zeros(
(self.height, self.width, 3), dtype=np.uint8
)
# Display model / TTS job status prominently
status_text = "Idle"
progress = 0.0
try:
# Show number of active lobby TTS jobs
with _lobby_threads_lock:
active_jobs = {k: v for k, v in _lobby_jobs.items() if v.get("status") == "running"}
if active_jobs:
# Pick the most recent running job (sort by start_time desc)
recent_lobby, recent_job = sorted(
active_jobs.items(), key=lambda kv: kv[1].get("start_time", 0), reverse=True
)[0]
# elapsed time available if needed for overlays
_ = time.time() - recent_job.get("start_time", time.time())
snippet = (recent_job.get("message") or "")[:80]
status_text = f"TTS running ({len(active_jobs)}): {snippet}"
# Progress as a heuristic (running jobs -> 0.5)
progress = 0.5
else:
# If there is produced audio waiting in _audio_data, show ready-to-play
if _audio_data is not None and getattr(_audio_data, "size", 0) > 0:
status_text = "TTS: Ready (audio buffered)"
progress = 1.0
else:
status_text = "Idle"
progress = 0.0
except Exception:
status_text = "Status: error"
progress = 0.0
# Draw status background (increased height for larger text)
cv2.rectangle(frame_array, (0, 0), (self.width, 80), (0, 0, 0), -1)
# Draw progress bar if loading
if progress < 1.0 and "Ready" not in status_text:
bar_width = int(progress * (self.width - 40))
cv2.rectangle(frame_array, (20, 55), (20 + bar_width, 70), (0, 255, 0), -1)
cv2.rectangle(
frame_array, (20, 55), (self.width - 20, 70), (255, 255, 255), 2
)
# Draw status text (larger font)
cv2.putText(
frame_array,
f"Status: {status_text}",
(10, 35),
cv2.FONT_HERSHEY_SIMPLEX,
1.2,
(255, 255, 255),
3,
)
# Draw clock in lower right corner, right justified
current_time = time.strftime("%H:%M:%S")
(text_width, _), _ = cv2.getTextSize(
current_time, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2
)
clock_x = self.width - text_width - 10 # 10px margin from right edge
clock_y = self.height - 30 # Move to 450 for height=480
cv2.putText(
frame_array,
current_time,
(clock_x, clock_y),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(255, 255, 255),
2,
)
# Draw TTS job status (small text under header)
try:
with _lobby_threads_lock:
active_jobs_count = sum(1 for v in _lobby_jobs.values() if v.get("status") == "running")
# Get most recent job info if present
recent_job = None
if active_jobs_count > 0:
running = [v for v in _lobby_jobs.values() if v.get("status") == "running"]
recent_job = max(running, key=lambda j: j.get("start_time", 0))
audio_samples = getattr(_audio_data, "size", 0) if _audio_data is not None else 0
job_snippet = ""
job_elapsed = None
if recent_job:
job_snippet = (recent_job.get("message") or "")[:80]
job_elapsed = time.time() - recent_job.get("start_time", time.time())
info_x = 10
info_y = 95
if active_jobs_count > 0:
cv2.putText(
frame_array,
f"TTS jobs: {active_jobs_count} | {job_snippet}",
(info_x, info_y),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 255),
1,
)
if job_elapsed is not None:
cv2.putText(
frame_array,
f"Elapsed: {job_elapsed:.1f}s",
(info_x + 420, info_y),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(200, 200, 255),
1,
)
else:
# show audio buffer status when idle
cv2.putText(
frame_array,
f"Audio buffered: {audio_samples} samples",
(info_x, info_y),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(200, 200, 200),
1,
)
except Exception:
# Non-critical overlay; ignore failures
pass
# Select the most active audio buffer and get its speech status
best_proc = None
best_rms = 0.0
speech_info = None
try:
for pname, arr in self.__class__.buffer.items():
try:
if len(arr) == 0:
rms = 0.0
else:
rms = float(np.sqrt(np.mean(arr**2)))
if rms > best_rms:
best_rms = rms
best_proc = (pname, arr.copy())
speech_info = self.__class__.speech_status.get(pname, {})
except Exception:
continue
except Exception:
best_proc = None
if best_proc is not None:
pname, arr = best_proc
# Use the last 2 second of audio data, padded with zeros if less
samples_needed = SAMPLE_RATE * 2 # 2 second(s)
if len(arr) <= 0:
arr_segment = np.zeros(samples_needed, dtype=np.float32)
elif len(arr) >= samples_needed:
arr_segment = arr[-samples_needed:].copy()
else:
# Pad with zeros at the beginning
arr_segment = np.concatenate(
[np.zeros(samples_needed - len(arr), dtype=np.float32), arr]
)
# Single normalization code path: normalize based on the historical
# peak observed for this stream (proc.max_observed_amplitude). This
# ensures the waveform display is consistent over time and avoids
# using the instantaneous buffer peak.
proc = None
norm = arr_segment.astype(np.float32)
# Map audio samples to pixels across the width
if norm.size < self.width:
padded = np.zeros(self.width, dtype=np.float32)
if norm.size > 0:
padded[-norm.size :] = norm
norm = padded
else:
block = int(np.ceil(norm.size / self.width))
norm = np.array(
[
np.mean(norm[i * block : min((i + 1) * block, norm.size)])
for i in range(self.width)
],
dtype=np.float32,
)
# For display we use the same `norm` computed above (single code
# path). Use `display_norm` alias to avoid confusion later in the
# code but don't recompute normalization.
display_norm = norm
# Draw waveform with color coding for speech detection
points: list[tuple[int, int]] = []
colors: list[tuple[int, int, int]] = [] # Color for each point
for x in range(self.width):
v = (
float(display_norm[x])
if x < display_norm.size and not np.isnan(display_norm[x])
else 0.0
)
y = int((1.0 - ((v + 1.0) / 2.0)) * (self.height - 120)) + 100
points.append((x, y))
# Color based on speech detection status
is_speech = (
speech_info.get("is_speech", False) if speech_info else False
)
energy_check = (
speech_info.get("energy_check", False) if speech_info else False
)
if is_speech:
colors.append((0, 255, 0)) # Green for detected speech
elif energy_check:
colors.append((255, 255, 0)) # Yellow for energy but not speech
else:
colors.append((128, 128, 128)) # Gray for background noise
# Draw colored waveform
if len(points) > 1:
for i in range(len(points) - 1):
cv2.line(frame_array, points[i], points[i + 1], colors[i], 1)
# Draw historical peak indicator (horizontal lines at +/-(target_peak))
try:
if proc is not None and getattr(proc, "normalization_enabled", False):
target_peak = float(getattr(proc, "normalization_target_peak", 0.0))
# Ensure target_peak is within [0, 1]
target_peak = max(0.0, min(1.0, target_peak))
def _amp_to_y(a: float) -> int:
return (
int((1.0 - ((a + 1.0) / 2.0)) * (self.height - 120)) + 100
)
top_y = _amp_to_y(target_peak)
bot_y = _amp_to_y(-target_peak)
# Draw thin magenta lines across the waveform area
cv2.line(
frame_array,
(0, top_y),
(self.width - 1, top_y),
(255, 0, 255),
1,
)
cv2.line(
frame_array,
(0, bot_y),
(self.width - 1, bot_y),
(255, 0, 255),
1,
)
# Label the peak with small text near the right edge
label = f"Peak:{target_peak:.2f}"
(tw, _), _ = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
)
lx = max(10, self.width - tw - 12)
ly = max(12, top_y - 6)
cv2.putText(
frame_array,
label,
(lx, ly),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 0, 255),
1,
)
except Exception:
# Non-critical: ignore any drawing errors
pass
# Add speech detection status overlay
if speech_info:
self._draw_speech_status(frame_array, speech_info, pname)
cv2.putText(
frame_array,
f"Waveform: {pname}",
(10, self.height - 15),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(255, 255, 255),
2,
)
frame = VideoFrame.from_ndarray(frame_array, format="bgr24")
frame.pts = pts
frame.time_base = fractions.Fraction(1 / 90000).limit_denominator(1000000)
return frame
def _draw_speech_status(
self,
frame_array: npt.NDArray[np.uint8],
speech_info: Dict[str, Any],
pname: str,
):
"""Draw speech detection status information."""
y_offset = 100
# Main status
is_speech = speech_info.get("is_speech", False)
status_text = "SPEECH" if is_speech else "NOISE"
status_color = (0, 255, 0) if is_speech else (128, 128, 128)
adaptive_thresh = speech_info.get("adaptive_threshold", 0)
cv2.putText(
frame_array,
f"{pname}: {status_text} (thresh: {adaptive_thresh:.4f})",
(10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
status_color,
2,
)
# Detailed metrics (smaller text)
metrics = [
f"Energy: {speech_info.get('energy', 0):.3f} ({'Y' if speech_info.get('energy_check', False) else 'N'})",
f"ZCR: {speech_info.get('zcr', 0):.3f} ({'Y' if speech_info.get('zcr_check', False) else 'N'})",
f"Spectral: {'Y' if 300 < speech_info.get('centroid', 0) < 3400 else 'N'}/{'Y' if speech_info.get('rolloff', 0) < 2000 else 'N'}/{'Y' if speech_info.get('flux', 0) > 0.01 else 'N'} ({'Y' if speech_info.get('spectral_check', False) else 'N'})",
f"Harmonic: {speech_info.get('hamonicity', 0):.3f} ({'Y' if speech_info.get('harmonic_check', False) else 'N'})",
f"Temporal: ({'Y' if speech_info.get('temporal_consistency', False) else 'N'})",
]
for _, metric in enumerate(metrics):
cv2.putText(
frame_array,
metric,
(320, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.4,
(255, 255, 255),
1,
)
y_offset += 15
logic_result = "E:" + ("Y" if speech_info.get("energy_check", False) else "N")
logic_result += " Z:" + ("Y" if speech_info.get("zcr_check", False) else "N")
logic_result += " S:" + (
"Y" if speech_info.get("spectral_check", False) else "N"
)
logic_result += " H:" + (
"Y" if speech_info.get("harmonic_check", False) else "N"
)
logic_result += " T:" + (
"Y" if speech_info.get("temporal_consistency", False) else "N"
)
cv2.putText(
frame_array,
logic_result,
(320, y_offset + 5),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(255, 255, 255),
1,
)
# Noise floor indicator
noise_floor = speech_info.get("noise_floor_energy", 0)
cv2.putText(
frame_array,
f"Noise Floor: {noise_floor:.4f}",
(10, y_offset + 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(200, 200, 200),
1,
)
async def handle_track_received(peer: Peer, track: MediaStreamTrack) -> None:
"""Handle incoming audio tracks from WebRTC peers."""
logger.info(
f"handle_track_received called for {peer.peer_name} with track kind: {track.kind}"
)
global _audio_processors, _send_chat_func
if track.kind != "audio":
logger.info(f"Ignoring non-audio track from {peer.peer_name}: {track.kind}")
return
# Initialize raw audio buffer for immediate graphing
if peer.peer_name not in WaveformVideoTrack.buffer:
WaveformVideoTrack.buffer[peer.peer_name] = np.array([], dtype=np.float32)
# Start processing frames immediately (before processor is ready)
logger.info(f"Starting frame processing loop for {peer.peer_name}")
frame_count = 0
while True:
try:
frame = await track.recv()
frame_count += 1
if frame_count % 100 == 0:
logger.debug(f"Received {frame_count} frames from {peer.peer_name}")
except MediaStreamError as e:
logger.info(f"Audio stream ended for {peer.peer_name}: {e}")
break
except Exception as e:
logger.error(f"Error receiving frame from {peer.peer_name}: {e}")
break
if isinstance(frame, AudioFrame):
try:
# Convert frame to numpy array
audio_data = frame.to_ndarray()
# Handle audio format conversion
audio_data = _process_audio_frame(audio_data, frame)
# Resample if needed
if frame.sample_rate != SAMPLE_RATE:
audio_data = _resample_audio(
audio_data, frame.sample_rate, SAMPLE_RATE
)
# Convert to float32
audio_data_float32 = audio_data.astype(np.float32)
# Update visualization buffer immediately
WaveformVideoTrack.buffer[peer.peer_name] = np.concatenate(
[WaveformVideoTrack.buffer[peer.peer_name], audio_data_float32]
)
# Limit buffer size to last 10 seconds
max_samples = SAMPLE_RATE * 10
if len(WaveformVideoTrack.buffer[peer.peer_name]) > max_samples:
WaveformVideoTrack.buffer[peer.peer_name] = (
WaveformVideoTrack.buffer[peer.peer_name][-max_samples:]
)
# # Process with optimized processor if available
# if peer.peer_name in _audio_processors:
# audio_processor = _audio_processors[peer.peer_name]
# audio_processor.add_audio_data(audio_data_float32)
except Exception as e:
logger.error(f"Error processing audio frame for {peer.peer_name}: {e}")
continue
# If processor already exists, just continue processing
# audio_processor = _audio_processors[peer.peer_name]
logger.info(f"Continuing OpenVINO audio processing for {peer.peer_name}")
try:
frame_count = 0
logger.info(f"Entering frame processing loop for {peer.peer_name}")
while True:
try:
logger.debug(f"Waiting for frame from {peer.peer_name}")
frame = await track.recv()
frame_count += 1
if frame_count == 1:
logger.info(f"Received first frame from {peer.peer_name}")
elif frame_count % 50 == 0:
logger.info(f"Received {frame_count} frames from {peer.peer_name}")
except MediaStreamError as e:
logger.info(f"Audio stream ended for {peer.peer_name}: {e}")
break
except Exception as e:
logger.error(f"Error receiving frame from {peer.peer_name}: {e}")
break
if isinstance(frame, AudioFrame):
try:
# Convert frame to numpy array
audio_data = frame.to_ndarray()
# Handle audio format conversion
audio_data = _process_audio_frame(audio_data, frame)
# Resample if needed
if frame.sample_rate != SAMPLE_RATE:
audio_data = _resample_audio(
audio_data, frame.sample_rate, SAMPLE_RATE
)
# Convert to float32
audio_data_float32 = audio_data.astype(np.float32)
logger.debug(
f"Processed audio frame {frame_count} from {peer.peer_name}: {len(audio_data_float32)} samples"
)
# Process with optimized processor if available
# audio_processor.add_audio_data(audio_data_float32)
except Exception as e:
logger.error(
f"Error processing audio frame for {peer.peer_name}: {e}"
)
continue
except Exception as e:
logger.error(
f"Unexpected error in audio processing for {peer.peer_name}: {e}",
exc_info=True,
)
finally:
cleanup_peer_processor(peer.peer_name)
def _process_audio_frame(
audio_data: npt.NDArray[Any], frame: AudioFrame
) -> npt.NDArray[np.float32]:
"""Process audio frame format conversion."""
# Handle stereo to mono conversion
if audio_data.ndim == 2:
if audio_data.shape[0] == 1:
audio_data = audio_data.squeeze(0)
else:
audio_data = np.mean(
audio_data, axis=0 if audio_data.shape[0] > audio_data.shape[1] else 1
)
# Normalize based on data type
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
elif audio_data.dtype == np.int32:
audio_data = audio_data.astype(np.float32) / 2147483648.0
return audio_data.astype(np.float32)
def _resample_audio(
audio_data: npt.NDArray[np.float32], orig_sr: int, target_sr: int
) -> npt.NDArray[np.float32]:
"""Resample audio efficiently."""
try:
# Handle stereo audio by converting to mono if necessary
if audio_data.ndim > 1:
audio_data = np.mean(audio_data, axis=1)
# Use high-quality resampling
resampled = librosa.resample( # type: ignore
audio_data.astype(np.float64),
orig_sr=orig_sr,
target_sr=target_sr,
res_type="kaiser_fast", # Good balance of quality and speed
)
return resampled.astype(np.float32) # type: ignore
except Exception as e:
logger.error(f"Resampling failed: {e}")
raise ValueError(
f"Failed to resample audio from {orig_sr} Hz to {target_sr} Hz: {e}"
)
# Public API functions
def agent_info() -> Dict[str, str]:
return {
"name": AGENT_NAME,
"description": AGENT_DESCRIPTION,
"has_media": "true",
"configurable": "true",
}
def get_config_schema() -> Dict[str, Any]:
"""Get the configuration schema for the Whisper bot"""
return {
"bot_name": AGENT_NAME,
"version": "1.0",
"parameters": [
],
"categories": [
],
}
def handle_config_update(lobby_id: str, config_values: Dict[str, Any]) -> bool:
"""Handle configuration update for a specific lobby"""
global _model_id, _device, _ov_config
try:
logger.info(f"Updating TTS config for lobby {lobby_id}: {config_values}")
config_applied = False
config_applied = True
return config_applied
except Exception as e:
logger.error(f"Failed to apply Whisper config update: {e}")
return False
def create_agent_tracks(session_name: str) -> Dict[str, MediaStreamTrack]:
"""Create agent tracks. Provides a synthetic video waveform track and a silent audio track for compatibility."""
class SilentAudioTrack(MediaStreamTrack):
kind = "audio"
def __init__(
self, sample_rate: int = SAMPLE_RATE, channels: int = 1, fps: int = 50
):
super().__init__()
self.sample_rate = sample_rate
self.channels = channels
self.fps = fps
self.samples_per_frame = int(self.sample_rate / self.fps)
self._timestamp = 0
# Per-track playback buffer (float32, mono, -1..1)
self._play_buffer = np.array([], dtype=np.float32)
# Source sample rate of the buffered audio (if any)
self._play_src_sr = None
# Phase for synthetic sine tone (radians)
self._sine_phase = 0.0
async def recv(self) -> AudioFrame:
global _audio_data
# If new global TTS audio was produced, grab and prepare it for playback
logger.info(
"recv called with _audio_data: %s and size: %s",
"set" if _audio_data is not None else "unset",
getattr(_audio_data, "size", 0) if _audio_data is not None else "N/A",
)
try:
if _audio_data is not None and getattr(_audio_data, "size", 0) > 0:
# Expect background worker to provide audio already resampled to
# the track sample rate (SAMPLE_RATE). Keep recv fast and
# non-blocking by avoiding any heavy DSP here.
try:
src_audio = np.asarray(_audio_data, dtype=np.float32)
# Clear global buffer (we consumed it into this track)
_audio_data = None
# Use the provided audio buffer directly as play buffer.
self._play_buffer = src_audio.astype(np.float32)
self._play_src_sr = self.sample_rate
except Exception:
logger.exception(
"Failed to prepare TTS audio buffer in recv; falling back to silence"
)
# (Intentionally avoid expensive I/O/DSP here - background worker
# will perform resampling and any debug file writes.)
# Prepare output samples for this frame
if self._play_buffer.size > 0:
take = min(self.samples_per_frame, int(self._play_buffer.size))
out = self._play_buffer[:take]
# Advance buffer
if take >= self._play_buffer.size:
self._play_buffer = np.array([], dtype=np.float32)
else:
self._play_buffer = self._play_buffer[take:]
else:
# No TTS audio buffered; output a 110 Hz sine tone at 0.1 volume
freq = 110.0
volume = 0.1
n = self.samples_per_frame
# incremental phase per sample
phase_inc = 2.0 * np.pi * freq / float(self.sample_rate)
samples_idx = np.arange(n, dtype=np.float32)
out = volume * np.sin(self._sine_phase + phase_inc * samples_idx)
# advance and wrap phase
self._sine_phase = (self._sine_phase + phase_inc * n) % (2.0 * np.pi)
logger.debug(
"No TTS audio: emitting 110Hz test tone (%d samples at %d Hz)",
n,
self.sample_rate,
)
# Convert float32 [-1.0,1.0] to int16 PCM
pcm = np.clip(out, -1.0, 1.0)
pcm_int16 = (pcm * 32767.0).astype(np.int16)
# aiortc AudioFrame.from_ndarray expects shape (channels, samples)
if self.channels == 1:
data = np.expand_dims(pcm_int16, axis=0)
layout = "mono"
else:
# Duplicate mono into stereo
data = np.vstack([pcm_int16, pcm_int16])
layout = "stereo"
frame = AudioFrame.from_ndarray(data, layout=layout)
frame.sample_rate = self.sample_rate
frame.pts = self._timestamp
frame.time_base = fractions.Fraction(1, self.sample_rate)
self._timestamp += self.samples_per_frame
# Pace the frame rate to avoid busy-looping
await asyncio.sleep(1 / self.fps)
return frame
except Exception as e:
logger.exception(f"Error in SilentAudioTrack.recv: {e}")
# On error, fall back to silent frame
data = np.zeros((self.channels, self.samples_per_frame), dtype=np.int16)
frame = AudioFrame.from_ndarray(
data, layout="mono" if self.channels == 1 else "stereo"
)
frame.sample_rate = self.sample_rate
frame.pts = self._timestamp
frame.time_base = fractions.Fraction(1, self.sample_rate)
self._timestamp += self.samples_per_frame
await asyncio.sleep(1 / self.fps)
return frame
try:
video_track = WaveformVideoTrack(
session_name=session_name, width=640, height=480, fps=15
)
audio_track = SilentAudioTrack()
return {"video": video_track, "audio": audio_track}
except Exception as e:
logger.error(f"Failed to create agent tracks: {e}")
return {}
async def handle_chat_message(
chat_message: ChatMessageModel,
send_message_func: Callable[[Union[str, ChatMessageModel]], Awaitable[None]],
) -> Optional[str]:
"""Handle incoming chat messages."""
global _audio_data, _lobby_threads
logger.info(f"Received chat message: {chat_message.message}")
lobby_id = getattr(chat_message, "lobby_id", None)
if not lobby_id:
# If no lobby id present, just spawn a worker without dedup logic
lobby_id = "__no_lobby__"
# Ensure we only run one background worker per lobby
loop = asyncio.get_running_loop()
with _lobby_threads_lock:
existing = _lobby_threads.get(lobby_id)
# existing may be a Thread or an asyncio Future-like object
already_running = False
try:
if existing is not None:
if hasattr(existing, "is_alive") and existing.is_alive():
already_running = True
elif hasattr(existing, "done") and not existing.done():
already_running = True
except Exception:
# Conservative: assume running if we can't determine
already_running = True
if already_running:
logger.info("Chat processing already active for lobby %s", lobby_id)
try:
# Prefer using the bound send/create chat helpers if available
if _create_chat_message_func is not None and _send_chat_func is not None:
cm = _create_chat_message_func("Already processing", lobby_id)
await _send_chat_func(cm)
else:
# Fallback to provided send_message_func. Some callers expect ChatMessageModel,
# but send_message_func also supports plain string in some integrations.
await send_message_func("Already processing")
except Exception:
logger.exception("Failed to send 'Already processing' reply")
return None
# Create background worker function (runs in threadpool via run_in_executor)
def _background_worker(lobby: str, msg: ChatMessageModel, _loop: asyncio.AbstractEventLoop) -> None:
global _audio_data
logger.info("TTS background worker starting for lobby %s (msg id=%s)", lobby, getattr(msg, "id", "no-id"))
start_time = time.time()
try:
try:
# Prefer an already-bound engine getter if present (useful in tests)
if globals().get("get_tts_engine"):
engine_getter = globals().get("get_tts_engine")
else:
from .vibevoicetts import get_tts_engine as engine_getter
logger.info("TTS engine getter resolved: %s", getattr(engine_getter, "__name__", str(engine_getter)))
engine = engine_getter()
logger.info("TTS engine instance created: %s", type(engine))
# Blocking TTS call moved to background thread
logger.info("Invoking engine.text_to_speech for lobby %s", lobby)
raw_audio = engine.text_to_speech(text=f"Speaker 1: {msg.message}", verbose=True)
logger.info("TTS generation completed for lobby %s in %.2fs", lobby, time.time() - start_time)
# Determine source sample rate if available
try:
src_sr = engine.get_sample_rate()
except Exception:
src_sr = 24000
# Ensure numpy array and float32
try:
raw_audio_arr = np.asarray(raw_audio, dtype=np.float32)
except Exception:
raw_audio_arr = np.array([], dtype=np.float32)
# Resample to track sample rate if needed (do this in bg thread)
if raw_audio_arr.size > 0 and src_sr != SAMPLE_RATE:
try:
resampled = librosa.resample(
raw_audio_arr.astype(np.float64),
orig_sr=src_sr,
target_sr=SAMPLE_RATE,
res_type="kaiser_fast",
)
_audio_data = resampled.astype(np.float32)
logger.info("Background worker resampled audio from %d Hz to %d Hz (samples=%d)", src_sr, SAMPLE_RATE, getattr(_audio_data, "size", 0))
except Exception:
logger.exception("Background resampling failed; using raw audio as-is")
_audio_data = raw_audio_arr.astype(np.float32)
else:
_audio_data = raw_audio_arr.astype(np.float32)
logger.info("Background worker assigned raw audio buffer (samples=%d, src_sr=%s)", getattr(_audio_data, "size", 0), src_sr)
except Exception:
# Fallback: try module-level convenience function if monkeypatched
try:
tts_fn = globals().get("text_to_speech")
if tts_fn:
logger.info("Using monkeypatched text_to_speech convenience function")
raw_audio = tts_fn(text=f"Speaker 1: {msg.message}")
else:
# Last resort: import the convenience function lazily
logger.info("Importing text_to_speech fallback from vibevoicetts")
from .vibevoicetts import text_to_speech as tts_fn
raw_audio = tts_fn(text=f"Speaker 1: {msg.message}")
logger.info("Fallback TTS invocation completed for lobby %s", lobby)
# normalize into numpy here as well
try:
raw_audio_arr = np.asarray(raw_audio, dtype=np.float32)
except Exception:
raw_audio_arr = np.array([], dtype=np.float32)
_audio_data = raw_audio_arr.astype(np.float32)
logger.info("Background worker assigned raw audio buffer (samples=%d)", getattr(_audio_data, 'size', 0))
except Exception:
logger.exception("Failed to perform TTS in background worker")
except Exception:
logger.exception("Unhandled error in background TTS worker for lobby %s", lobby)
finally:
# Update job metadata and cleanup thread entry for this lobby
try:
with _lobby_threads_lock:
# Update job metadata if present
job = _lobby_jobs.get(lobby)
if job is not None:
job["end_time"] = time.time()
job["status"] = "finished"
try:
job["audio_samples"] = int(getattr(_audio_data, "size", 0)) if _audio_data is not None else 0
except Exception:
job["audio_samples"] = None
# If the stored worker is the current thread, remove it. For futures,
# they will be removed by the done callback registered below.
th = _lobby_threads.get(lobby)
if th is threading.current_thread():
del _lobby_threads[lobby]
except Exception:
logger.exception("Error cleaning up background thread record for lobby %s", lobby)
# Schedule the worker in the event loop's default threadpool. This avoids
# raw Thread.start() races and integrates better with asyncio-based hosts.
logger.info("Scheduling background TTS worker for lobby %s via run_in_executor", lobby_id)
worker_obj = None
try:
# Use a small wrapper so the very first thing the thread does is emit a log
def _bg_wrapper(lobby_w: str, msg_w: ChatMessageModel, loop_w: asyncio.AbstractEventLoop) -> None:
logger.info("Background worker wrapper started for lobby %s (thread=%s)", lobby_w, threading.current_thread())
try:
_background_worker(lobby_w, msg_w, loop_w)
finally:
logger.info("Background worker wrapper exiting for lobby %s (thread=%s)", lobby_w, threading.current_thread())
fut = loop.run_in_executor(None, _bg_wrapper, lobby_id, chat_message, loop)
worker_obj = fut
_lobby_threads[lobby_id] = worker_obj
logger.info("Scheduled background TTS worker (wrapper) for lobby %s: %s", lobby_id, fut)
# Attach a done callback to clean up registry and update job metadata when finished
def _on_worker_done(fut_obj: "asyncio.Future[Any]") -> None:
try:
# Log exception or result for easier debugging
try:
exc = fut_obj.exception()
except Exception:
exc = None
if exc:
logger.exception("Background TTS worker for lobby %s raised exception", lobby_id, exc_info=exc)
else:
try:
res = fut_obj.result()
logger.info("Background TTS worker for lobby %s completed successfully; result=%s", lobby_id, str(res))
except Exception:
# Some futures may not have a result or may raise when retrieving
logger.info("Background TTS worker for lobby %s completed (no result).", lobby_id)
with _lobby_threads_lock:
# mark job finished and attach exception info if present
job = _lobby_jobs.get(lobby_id)
if job is not None:
job["end_time"] = time.time()
job["status"] = "finished"
try:
job["audio_samples"] = int(getattr(_audio_data, "size", 0)) if _audio_data is not None else 0
except Exception:
job["audio_samples"] = None
# remove only if the stored object is this future
stored = _lobby_threads.get(lobby_id)
if stored is fut_obj:
del _lobby_threads[lobby_id]
except Exception:
logger.exception("Error in worker done callback for lobby %s", lobby_id)
try:
fut.add_done_callback(_on_worker_done)
except Exception:
# ignore if the future does not support callbacks
pass
except Exception:
# Fallback to raw Thread in the unlikely case run_in_executor fails
thread = threading.Thread(target=_background_worker, args=(lobby_id, chat_message, loop), daemon=True)
worker_obj = thread
_lobby_threads[lobby_id] = thread
logger.info("Created background TTS thread for lobby %s (fallback): %s", lobby_id, thread)
# Record job metadata for status display
try:
with _lobby_threads_lock:
_lobby_jobs[lobby_id] = {
"status": "running",
"start_time": time.time(),
"message": getattr(chat_message, "message", ""),
"worker": worker_obj,
"error": None,
"end_time": None,
"audio_samples": None,
}
except Exception:
logger.exception("Failed to record lobby job metadata for %s", lobby_id)
# If we fell back to a raw Thread, start it now; otherwise the future is already scheduled.
try:
stored = _lobby_threads.get(lobby_id)
if stored is not None and hasattr(stored, "start"):
logger.info("Starting fallback background TTS thread for lobby %s", lobby_id)
stored.start()
logger.info("Background TTS thread started for lobby %s", lobby_id)
except Exception:
logger.exception("Failed to start background TTS worker for %s", lobby_id)
return None
async def on_track_received(peer: Peer, track: MediaStreamTrack) -> None:
"""Callback when a new track is received from a peer."""
await handle_track_received(peer, track)
def get_track_handler() -> Callable[[Peer, MediaStreamTrack], Awaitable[None]]:
"""Return the track handler function."""
return on_track_received
def bind_send_chat_function(
send_chat_func: Callable[[ChatMessageModel], Awaitable[None]],
create_chat_message_func: Callable[[str, Optional[str]], ChatMessageModel],
) -> None:
"""Bind the send chat function."""
global _send_chat_func, _create_chat_message_func, _audio_processors
logger.info("Binding send chat function to OpenVINO whisper agent")
_send_chat_func = send_chat_func
_create_chat_message_func = create_chat_message_func
# Update existing processors
# for peer_name, processor in _audio_processors.items():
# processor.send_chat_func = send_chat_func
# processor.create_chat_message_func = create_chat_message_func
# logger.debug(f"Updated processor for {peer_name} with new send chat function")
def cleanup_peer_processor(peer_name: str) -> None:
"""Clean up processor for disconnected peer."""
global _audio_processors
if peer_name in WaveformVideoTrack.buffer:
del WaveformVideoTrack.buffer[peer_name]