3314 lines
141 KiB
Python

"""Streaming Whisper agent (bots/whisper) - OpenVINO Optimized for Intel Arc B580
Real-time speech transcription agent that processes incoming audio streams
and sends transcriptions as chat messages to the lobby.
Optimized for Intel Arc B580 GPU using OpenVINO inference engine.
"""
import asyncio
import numpy as np
import time
import threading
import os
import gc
import shutil
from queue import Queue, Empty
from typing import Dict, Optional, Callable, Awaitable, Any, List, Union
from pathlib import Path
import numpy.typing as npt
from pydantic import BaseModel, Field, ConfigDict
from typing import Tuple
# Core dependencies
import librosa
from shared.logger import logger
from aiortc import MediaStreamTrack
from aiortc.mediastreams import MediaStreamError
from av import AudioFrame, VideoFrame
import cv2
import fractions
from time import perf_counter
# Import shared models for chat functionality
import sys
sys.path.append(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
from shared.models import ChatMessageModel
from voicebot.models import Peer
# OpenVINO optimized imports
import openvino as ov
from optimum.intel.openvino import OVModelForSpeechSeq2Seq # type: ignore
from transformers import WhisperProcessor
from transformers.generation.configuration_utils import GenerationConfig
from openvino.runtime import Core # Part of optimum.intel.openvino # type: ignore
import torch
# Import quantization dependencies with error handling
import nncf # type: ignore
from optimum.intel.openvino.quantization import InferRequestWrapper # type: ignore
QUANTIZATION_AVAILABLE = True
# Type definitions
AudioArray = npt.NDArray[np.float32]
ModelConfig = Dict[str, Union[str, int, bool]]
CalibrationData = List[Dict[str, Any]]
_device = "GPU.1" # Default to Intel Arc B580 GPU
# Global lock to serialize calls into the OpenVINO model.generate/decode
# since some backends are not safe for concurrent generate calls.
_generate_global_lock = threading.Lock()
def get_available_devices() -> list[dict[str, Any]]:
"""List available OpenVINO devices with their properties."""
try:
core = Core()
devices = core.available_devices
device_info: list[dict[str, Any]] = []
for device in devices:
try:
# Get device properties
properties = core.get_property(device, "FULL_DEVICE_NAME")
# Attempt to get additional properties if available
try:
device_type = core.get_property(device, "DEVICE_TYPE")
except Exception:
device_type = "N/A"
try:
capabilities: Any = core.get_property(
device, "SUPPORTED_PROPERTIES"
)
except Exception:
capabilities = "N/A"
device_info.append(
{
"name": device,
"full_name": properties,
"type": device_type,
"capabilities": capabilities,
}
)
except Exception as e:
logger.error(f"Failed to retrieve properties for device {device}: {e}")
device_info.append(
{
"name": device,
"full_name": "Unknown",
"type": "N/A",
"capabilities": "N/A",
}
)
return device_info
except Exception as e:
logger.error(f"Failed to retrieve available devices: {e}")
return []
def print_available_devices(device: str | None = None):
"""Print available OpenVINO devices in a formatted manner."""
devices = get_available_devices()
if not devices:
logger.info("No OpenVINO devices detected.")
return
logger.info("Available OpenVINO Devices:")
for d in devices:
logger.info(
f"- Device: {d.get('name')} {'*' if d.get('name') == device else ''}"
)
logger.info(f" Full Name: {d.get('full_name')}")
logger.info(f" Type: {d.get('type')}")
print_available_devices(_device)
class AudioQueueItem(BaseModel):
"""Audio data with timestamp for processing queue."""
model_config = ConfigDict(arbitrary_types_allowed=True)
audio: AudioArray = Field(..., description="Audio data as numpy array")
timestamp: float = Field(..., description="Timestamp when audio was captured")
class TranscriptionHistoryItem(BaseModel):
"""Transcription history item with metadata."""
model_config = ConfigDict(arbitrary_types_allowed=True)
message: str = Field(..., description="Transcribed text message")
timestamp: float = Field(..., description="When transcription was completed")
is_final: bool = Field(
..., description="Whether this is final or streaming transcription"
)
class OpenVINOConfig(BaseModel):
"""OpenVINO configuration for Intel Arc B580 optimization."""
model_config = ConfigDict(arbitrary_types_allowed=True)
device: str = Field(default=_device, description="Target device for inference")
cache_dir: str = Field(
default="/root/.cache", description="Cache directory for compiled models"
)
enable_quantization: bool = Field(
default=True, description="Enable INT8 quantization"
)
throughput_streams: int = Field(
default=2, description="Number of inference streams"
)
max_threads: int = Field(default=8, description="Maximum number of threads")
def to_ov_config(self) -> ModelConfig:
"""Convert to OpenVINO configuration dictionary."""
cfg: ModelConfig = {"CACHE_DIR": self.cache_dir}
# Only include GPU-specific tuning options when the target device is GPU.
# Some OpenVINO plugins (notably the CPU plugin) will raise NotFound
# errors for GPU_* properties, so avoid passing them unless applicable.
device = (self.device or "").upper()
if device == "GPU":
cfg.update(
{
# Throughput / stream tuning
"GPU_THROUGHPUT_STREAMS": str(self.throughput_streams),
# Threading controls may be driver/plugin-specific; keep minimal
# NOTE: We intentionally do NOT set GPU_MAX_NUM_THREADS here
# because some OpenVINO plugins / builds (and the CPU plugin
# during a fallback) do not recognize the property and will
# raise NotFound/UnsupportedProperty errors. If you need to
# tune GPU threads for a specific driver, set that externally
# or via vendor-specific tools.
}
)
else:
# Safe CPU-side defaults
cfg.update(
{
"CPU_THROUGHPUT_NUM_THREADS": str(self.max_threads),
# "CPU_BIND_THREAD": "YES", # Removed: not supported by CPU plugin
}
)
return cfg
# Global configuration and constants
AGENT_NAME = "Transcription Bot"
AGENT_DESCRIPTION = "Real-time speech transcription (OpenVINO Whisper) - converts speech to text on Intel Arc B580"
SAMPLE_RATE = 16000 # Whisper expects 16kHz
CHUNK_DURATION_MS = 100 # Reduced latency - 100ms chunks
VAD_THRESHOLD = 0.01 # Initial voice activity detection threshold
MAX_SILENCE_FRAMES = 30 # 3 seconds of silence before stopping (for overall silence)
MAX_TRAILING_SILENCE_FRAMES = 5 # 0.5 seconds of trailing silence
VAD_CONFIG: Dict[str, Any] = {
"energy_threshold": 0.01,
"zcr_threshold": 0.1,
"adapt_thresholds": True,
"adaptation_window": 100, # samples to consider for adaptation
"speech_freq_min": 200, # Hz
"speech_freq_max": 3000, # Hz
}
# Normalization defaults: used to control optional per-stream normalization
# applied before sending audio to the model and for visualization.
NORMALIZATION_ENABLED = True
NORMALIZATION_TARGET_PEAK = 0.95
MAX_NORMALIZATION_GAIN = 3.0
# How long (seconds) of no-arriving audio before we consider the phrase ended
INACTIVITY_TIMEOUT = 1.5
model_ids = {
"Distil-Whisper": [
"distil-whisper/distil-large-v2",
"distil-whisper/distil-medium.en",
"distil-whisper/distil-small.en",
],
"Whisper": [
"openai/whisper-large-v3",
"openai/whisper-large-v2",
"openai/whisper-large",
"openai/whisper-medium",
"openai/whisper-small",
"openai/whisper-base",
"openai/whisper-tiny",
"openai/whisper-medium.en",
"openai/whisper-small.en",
"openai/whisper-base.en",
"openai/whisper-tiny.en",
],
}
# Global model configuration
_model_type = model_ids["Distil-Whisper"]
_model_id = _model_type[0] # Use distil-large-v2 for best quality
_ov_config = OpenVINOConfig()
def setup_intel_arc_environment() -> None:
"""Configure environment variables for optimal Intel Arc B580 performance."""
os.environ["OV_GPU_CACHE_MODEL"] = "1"
os.environ["OV_GPU_ENABLE_OPENCL_THROTTLING"] = "0"
os.environ["OV_GPU_DISABLE_WINOGRAD"] = "1"
logger.info("Intel Arc B580 environment variables configured")
class AdvancedVAD:
"""Advanced Voice Activity Detection with noise rejection."""
def __init__(self, sample_rate: int = 16000):
self.sample_rate = sample_rate
# More permissive thresholds based on research
self.energy_threshold = 0.005 # Reduced from 0.02
self.zcr_min = 0.02 # Reduced from 0.1 (voiced speech < 0.1)
self.zcr_max = 0.8 # Increased from 0.5 (unvoiced speech ~0.3-0.8)
# Spectral thresholds (keep existing - these work well)
self.spectral_centroid_min = 200 # Slightly lower
self.spectral_centroid_max = 4000 # Slightly higher
self.spectral_rolloff_threshold = 3000 # More permissive
# Relaxed temporal consistency
self.minimum_duration = 0.2 # Reduced from 0.3s
self.speech_history: List[bool] = []
self.max_history = 8 # Reduced from 10
# Adaptive noise floor
self.noise_floor_energy = 0.001
self.noise_floor_centroid = 1000
self.adaptation_rate = 0.05
# Harmonicity improvements
self.prev_magnitude = None
self.harmonic_threshold = 0.15 # Reduced from 0.3
def analyze_frame(self, audio_data: AudioArray) -> Tuple[bool, Dict[str, Any]]:
"""Analyze audio frame for speech vs noise."""
# Basic energy features
energy = np.sqrt(np.mean(audio_data**2))
# Zero-crossing rate
signs = np.sign(audio_data)
signs[signs == 0] = 1
zcr = np.sum(np.abs(np.diff(signs))) / (2 * len(audio_data))
# Spectral features
spectral_features = self._compute_spectral_features(audio_data)
# Individual feature checks
# Use adaptive energy threshold (reduced multiplier)
adaptive_energy_threshold = max(
self.energy_threshold,
self.noise_floor_energy * 2.0 # Reduced from 3.0
)
energy_check = energy > adaptive_energy_threshold
# More permissive ZCR check (allow voiced OR unvoiced speech)
zcr_check = (
self.zcr_min < zcr < self.zcr_max or # General range
zcr < 0.1 or # Definitely voiced
(0.2 < zcr < 0.6 and energy > self.energy_threshold * 2) # Unvoiced with energy
)
# Spectral check (more permissive)
spectral_check = (
self.spectral_centroid_min < spectral_features['centroid'] < self.spectral_centroid_max and
spectral_features['rolloff'] < self.spectral_rolloff_threshold and
spectral_features['flux'] > 0.005 # Reduced threshold
)
# Improved harmonicity check
harmonic_check = spectral_features['harmonicity'] > self.harmonic_threshold
# More permissive combined decision (OR logic for some conditions)
frame_has_speech = (
energy_check and (
zcr_check or # ZCR is good, OR
spectral_check or # Spectral features are good, OR
harmonic_check # Harmonicity is good
)
) or (
# Alternative path: strong energy + reasonable spectral
energy > adaptive_energy_threshold * 1.5 and spectral_check
)
# Update history
self.speech_history.append(frame_has_speech)
if len(self.speech_history) > self.max_history:
self.speech_history.pop(0)
# More permissive temporal consistency (2 of last 4, or 1 of last 2 if strong)
if len(self.speech_history) >= 4:
recent_speech = sum(self.speech_history[-4:]) >= 2
elif len(self.speech_history) >= 2:
# For shorter history, be more permissive if recent frame is strong
recent_speech = (
sum(self.speech_history[-2:]) >= 1 and
(energy > adaptive_energy_threshold * 1.2 or frame_has_speech)
)
else:
recent_speech = frame_has_speech
# Faster noise floor adaptation during silence
if not frame_has_speech:
self.noise_floor_energy = (
self.adaptation_rate * energy +
(1 - self.adaptation_rate) * self.noise_floor_energy
)
metrics: Dict[str, Any] = {
'energy': energy,
'zcr': zcr,
'centroid': spectral_features['centroid'],
'rolloff': spectral_features['rolloff'],
'flux': spectral_features['flux'],
'harmonicity': spectral_features['harmonicity'],
'noise_floor_energy': self.noise_floor_energy,
'adaptive_threshold': adaptive_energy_threshold,
'energy_check': energy_check,
'zcr_check': zcr_check,
'spectral_check': spectral_check,
'harmonic_check': harmonic_check,
'temporal_consistency': recent_speech
}
return recent_speech, metrics # type: ignore
def _compute_spectral_features(self, audio_data: AudioArray) -> Dict[str, Any]:
"""Compute spectral features for speech detection."""
# Apply window to reduce spectral leakage
windowed = audio_data * np.hanning(len(audio_data))
# FFT
fft_data = np.fft.rfft(windowed)
magnitude = np.abs(fft_data)
freqs = np.fft.rfftfreq(len(windowed), 1/self.sample_rate)
# Avoid division by zero
if np.sum(magnitude) == 0:
return {
'centroid': 0, 'rolloff': 0, 'flux': 0, 'harmonicity': 0
}
# Spectral centroid
centroid = np.sum(freqs * magnitude) / np.sum(magnitude)
# Spectral rolloff (frequency below which 85% of energy is contained)
cumsum = np.cumsum(magnitude)
rolloff_point = 0.85 * cumsum[-1]
rolloff_idx = np.where(cumsum >= rolloff_point)[0]
rolloff = freqs[rolloff_idx[0]] if len(rolloff_idx) > 0 else freqs[-1]
# Spectral flux (measure of spectral change)
if hasattr(self, '_prev_magnitude'):
flux = np.sum((magnitude - self._prev_magnitude) ** 2)
else:
flux = 0
self._prev_magnitude = magnitude.copy()
# Harmonicity (detect harmonic structure typical of speech)
harmonicity = self._compute_harmonicity(magnitude, freqs)
return {
'centroid': centroid,
'rolloff': rolloff,
'flux': flux,
'harmonicity': harmonicity
}
def _compute_harmonicity(self, magnitude: npt.NDArray[np.float32], freqs: npt.NDArray[np.float32]) -> float:
"""Compute harmonicity score (0-1, higher = more harmonic/speech-like)."""
# Find fundamental frequency candidate (peak in 80-400Hz range for speech)
# Expanded F0 range for better detection
speech_range = (freqs >= 60) & (freqs <= 500) # Expanded from 80-400Hz
if not np.any(speech_range):
return 0.0
speech_magnitude = magnitude[speech_range]
speech_freqs = freqs[speech_range]
if len(speech_magnitude) == 0:
return 0.0
# Find strongest peak in speech range
# More robust F0 detection - find peaks instead of just max
try:
# Import scipy here to handle missing dependency gracefully
from scipy.signal import find_peaks # type: ignore
# Ensure distance is at least 1
min_distance = max(1, int(len(speech_magnitude) * 0.05))
peaks, properties = find_peaks( # type: ignore
speech_magnitude,
height=np.max(speech_magnitude) * 0.05, # Lowered from 0.1
distance=min_distance, # Minimum peak separation
)
if len(peaks) == 0: # type: ignore
# Fallback to simple max if no peaks found
f0_idx = np.argmax(speech_magnitude)
else:
# Use the strongest peak
strongest_peak_idx = np.argmax(speech_magnitude[peaks])
f0_idx = int(peaks[strongest_peak_idx]) # type: ignore
except ImportError:
# scipy not available, use simple max
f0_idx = np.argmax(speech_magnitude)
f0 = speech_freqs[f0_idx]
f0_strength = speech_magnitude[f0_idx]
# More lenient F0 strength requirement
if f0_strength < np.max(magnitude) * 0.03: # Reduced from 0.1
return 0.0
# Check for harmonics (2*f0, 3*f0, etc.)
harmonic_strength = 0.0
total_harmonics = 0
for harmonic in range(2, 5): # Check 2nd through 4th harmonics
harmonic_freq = f0 * harmonic
if harmonic_freq > freqs[-1]:
break
# Find closest frequency bins (check neighboring bins too)
harmonic_idx = np.argmin(np.abs(freqs - harmonic_freq))
# Check a small neighborhood around the harmonic frequency
start_idx = max(0, int(harmonic_idx) - 2)
end_idx = min(len(magnitude), int(harmonic_idx) + 3)
local_max = np.max(magnitude[start_idx:end_idx])
harmonic_strength += local_max
total_harmonics += 1
if total_harmonics == 0:
return 0.0
# Normalize and return
harmonicity = (harmonic_strength / total_harmonics) / f0_strength
return min(harmonicity, 1.0)
class OpenVINOWhisperModel:
"""OpenVINO optimized Whisper model for Intel Arc B580."""
def __init__(self, model_id: str, config: OpenVINOConfig, device: str):
self.model_id = model_id
self.config = config
self.device = device
# Ensure cache directory exists
Path(self.config.cache_dir).mkdir(parents=True, exist_ok=True)
self.model_path = Path(self.config.cache_dir) / model_id.replace("/", "_")
self.quantized_model_path = self.model_path / "quantized"
self.processor: Optional[WhisperProcessor] = None
self.ov_model: Optional[OVModelForSpeechSeq2Seq] = None
self.is_quantized = False
self._initialize_model()
def _initialize_model(self) -> None:
"""Initialize processor and OpenVINO model with robust error handling."""
logger.info(f"Initializing OpenVINO Whisper model: {self.model_id}")
try:
# Initialize processor
logger.info(
f"Loading Whisper model '{self.model_id}' on device: {self.device}"
)
self.processor = WhisperProcessor.from_pretrained( # type: ignore
self.model_id, use_fast=True
) # type: ignore
logger.info("Whisper processor loaded successfully")
# Export the model to OpenVINO IR if not already converted
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained( # type: ignore
self.model_id, export=True, device=self.device
) # type: ignore
logger.info("Whisper model exported as OpenVINO IR")
# # Try to load quantized model first if it exists
# if self.config.enable_quantization and self.quantized_model_path.exists():
# if self._try_load_quantized_model():
# return
# # Load or create FP16 model
# if self.model_path.exists():
# self._load_fp16_model()
# else:
# self._convert_model()
# # Try quantization after model is loaded and compiled
# if self.config.enable_quantization and not self.is_quantized:
# self._try_quantize_existing_model()
except Exception as e:
logger.error(f"Error initializing model: {e}")
# Fallback to basic conversion without quantization
self._fallback_initialization()
def _fallback_initialization(self) -> None:
"""Fallback initialization without quantization."""
logger.warning("Falling back to basic OpenVINO conversion without quantization")
try:
if not self.model_path.exists():
self._convert_model_basic()
self._load_fp16_model()
except Exception as e:
logger.error(f"Fallback initialization failed: {e}")
raise RuntimeError("Failed to initialize OpenVINO model") from e
def _convert_model(self) -> None:
"""Convert PyTorch model to OpenVINO format."""
logger.info(f"Converting {self.model_id} to OpenVINO format...")
try:
# Convert to OpenVINO with FP16 for Arc GPU
ov_model = OVModelForSpeechSeq2Seq.from_pretrained( # type: ignore
self.model_id,
ov_config=self.config.to_ov_config(),
export=True,
compile=False,
load_in_8bit=False,
)
# Enable FP16 for Intel Arc performance
if hasattr(ov_model, 'half'):
ov_model.half() # type: ignore
ov_model.save_pretrained(self.model_path) # type: ignore
logger.info("Model converted and saved in FP16 format")
# Load the converted model
self.ov_model = ov_model # type: ignore
self._compile_model()
except Exception as e:
logger.error(f"Model conversion failed: {e}")
raise
def _convert_model_basic(self) -> None:
"""Basic model conversion without advanced features."""
logger.info(f"Basic conversion of {self.model_id} to OpenVINO format...")
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(# type: ignore
self.model_id, export=True, compile=False
)
ov_model.save_pretrained(self.model_path)# type: ignore
logger.info("Basic model conversion completed")
def _load_fp16_model(self) -> None:
"""Load existing FP16 OpenVINO model."""
logger.info("Loading existing FP16 OpenVINO model...")
try:
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(# type: ignore
self.model_path, ov_config=self.config.to_ov_config(), compile=False
) # type: ignore
self._compile_model()
except Exception as e:
logger.error(f"Failed to load FP16 model: {e}")
# Try basic loading
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(# type: ignore
self.model_path, compile=False
) # type: ignore
self._compile_model()
def _try_load_quantized_model(self) -> bool:
"""Try to load existing quantized model."""
try:
logger.info("Loading existing INT8 quantized model...")
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(# type: ignore
self.quantized_model_path,
ov_config=self.config.to_ov_config(),
compile=False,
) # type: ignore
self._compile_model()
self.is_quantized = True
logger.info("Quantized model loaded successfully")
return True
except Exception as e:
logger.warning(f"Failed to load quantized model: {e}")
return False
def _try_quantize_existing_model(self) -> None:
"""Try to quantize the existing model after it's loaded."""
if not QUANTIZATION_AVAILABLE:
logger.info("Quantization libraries not available, skipping quantization")
return
if self.ov_model is None:
logger.warning("No model loaded, cannot quantize")
return
# Check if model components are available
if not hasattr(self.ov_model, "encoder"):
logger.warning("Model encoder not available, skipping quantization")
return
if (
not hasattr(self.ov_model, "decoder_with_past")
):
logger.warning(
"Model decoder_with_past not available, skipping quantization"
)
return
try:
logger.info("Attempting to quantize compiled model...")
self._quantize_model_safe()
except Exception as e:
logger.warning(f"Quantization failed, continuing with FP16 model: {e}")
def _quantize_model_safe(self) -> None:
"""Safely quantize the model with extensive error handling."""
if not nncf:
logger.info("Quantization libraries not available, skipping quantization")
return
if self.quantized_model_path.exists():
logger.info("Quantized model already exists")
return
if self.ov_model is None:
raise RuntimeError("No model to quantize")
if not self.ov_model.decoder_with_past:
raise RuntimeError("Model decoder_with_past not available")
logger.info("Creating INT8 quantized model for Intel Arc B580...")
try:
# Collect calibration data with error handling
calibration_data = self._collect_calibration_data_safe()
if not calibration_data:
logger.warning("No calibration data collected, skipping quantization")
return
# Quantize encoder
if calibration_data.get("encoder"):
logger.info("Quantizing encoder...")
quantized_encoder = nncf.quantize(
self.ov_model.encoder.model,
nncf.Dataset(calibration_data["encoder"]),
model_type=nncf.ModelType.TRANSFORMER,
subset_size=min(len(calibration_data["encoder"]), 50),
)
else:
logger.warning("No encoder calibration data, copying original encoder")
quantized_encoder = self.ov_model.encoder.model
# Quantize decoder
if calibration_data.get("decoder"):
logger.info("Quantizing decoder with past...")
quantized_decoder = nncf.quantize(
self.ov_model.decoder_with_past.model,
nncf.Dataset(calibration_data["decoder"]),
model_type=nncf.ModelType.TRANSFORMER,
subset_size=min(len(calibration_data["decoder"]), 50),
)
else:
logger.warning("No decoder calibration data, copying original decoder")
quantized_decoder = self.ov_model.decoder_with_past.model
# Save quantized models
self.quantized_model_path.mkdir(parents=True, exist_ok=True)
ov.save_model(# type: ignore
quantized_encoder,
self.quantized_model_path / "openvino_encoder_model.xml",
) # type: ignore
ov.save_model(# type: ignore
quantized_decoder,
self.quantized_model_path / "openvino_decoder_with_past_model.xml",
) # type: ignore # type: ignore
# Copy remaining files
self._copy_model_files()
# Clean up
del quantized_encoder, quantized_decoder, calibration_data
gc.collect()
# Load quantized model
if self._try_load_quantized_model():
logger.info("Quantization completed successfully")
except Exception as e:
logger.error(f"Quantization failed: {e}")
# Clean up partial quantization
if self.quantized_model_path.exists():
shutil.rmtree(self.quantized_model_path, ignore_errors=True)
def _collect_calibration_data_safe(
self, dataset_size: int = 20
) -> Dict[str, CalibrationData]:
"""Safely collect calibration data with extensive error handling."""
if self.ov_model is None or self.processor is None:
return {}
logger.info(f"Collecting calibration data ({dataset_size} samples)...")
# Check model components
if not self.ov_model.encoder:
logger.warning("Encoder not available for calibration")
return {}
if not self.ov_model.decoder_with_past:
logger.warning("Decoder with past not available for calibration")
return {}
# Check if requests are available
if (
not hasattr(self.ov_model.encoder, "request")
or self.ov_model.encoder.request is None
):
logger.warning("Encoder request not available for calibration")
return {}
if (
not hasattr(self.ov_model.decoder_with_past, "request")
or self.ov_model.decoder_with_past.request is None
):
logger.warning("Decoder request not available for calibration")
return {}
# Setup data collection
original_encoder_request = self.ov_model.encoder.request
original_decoder_request = self.ov_model.decoder_with_past.request
encoder_data: CalibrationData = []
decoder_data: CalibrationData = []
try:
self.ov_model.encoder.request = InferRequestWrapper(# type: ignore
original_encoder_request, encoder_data# type: ignore
) # type: ignore
self.ov_model.decoder_with_past.request = InferRequestWrapper(
original_decoder_request, decoder_data
) # type: ignore
# Generate synthetic calibration data instead of loading dataset
logger.info("Generating synthetic calibration data...")
for i in range(dataset_size):
try:
# Generate random audio similar to speech
duration = 2.0 + np.random.random() * 3.0 # 2-5 seconds
synthetic_audio = (
np.random.randn(int(16000 * duration)).astype(np.float32)
* 0.1
)
inputs: Any = self.processor(# type: ignore
synthetic_audio, sampling_rate=16000, return_tensors="pt"
) # type: ignore
# Run inference to collect calibration data
_ = self.ov_model.generate( # type: ignore
inputs.input_features, max_new_tokens=10 # type: ignore
)
if i % 5 == 0:
logger.debug(
f"Generated calibration sample {i + 1}/{dataset_size}"
)
except Exception as e:
logger.warning(f"Failed to generate calibration sample {i}: {e}")
continue
except Exception as e:
logger.error(f"Error during calibration data collection: {e}")
finally:
# Restore original requests
try:
self.ov_model.encoder.request = original_encoder_request
self.ov_model.decoder_with_past.request = original_decoder_request
except Exception as e:
logger.warning(f"Failed to restore original requests: {e}")
result = {}
if encoder_data:
result["encoder"] = encoder_data
logger.info(f"Collected {len(encoder_data)} encoder calibration samples")
if decoder_data:
result["decoder"] = decoder_data
logger.info(f"Collected {len(decoder_data)} decoder calibration samples")
return result # type: ignore
def _copy_model_files(self) -> None:
"""Copy necessary model files for quantized model."""
try:
# Copy config and first-step decoder
if (self.model_path / "config.json").exists():
shutil.copy(
self.model_path / "config.json",
self.quantized_model_path / "config.json",
)
decoder_xml = self.model_path / "openvino_decoder_model.xml"
decoder_bin = self.model_path / "openvino_decoder_model.bin"
if decoder_xml.exists():
shutil.copy(
decoder_xml,
self.quantized_model_path / "openvino_decoder_model.xml",
)
if decoder_bin.exists():
shutil.copy(
decoder_bin,
self.quantized_model_path / "openvino_decoder_model.bin",
)
except Exception as e:
logger.warning(f"Failed to copy some model files: {e}")
def _compile_model(self) -> None:
"""Compile model for Intel Arc B580."""
if self.ov_model is None:
raise RuntimeError("Model not loaded")
logger.info("Compiling model for Intel Arc B580...")
try:
self.ov_model.to(self.config.device)
self.ov_model.compile()
# Warmup for optimal performance
self._warmup_model()
logger.info("Model compiled and warmed up successfully")
except Exception as e:
logger.warning(
f"Failed to compile for {self.config.device}, attempting safe CPU fallback: {e}"
)
# Fallback: reload/compile model with a CPU-only ov_config to avoid
# passing GPU-specific properties to the CPU plugin which can raise
# NotFound/UnsupportedProperty exceptions.
try:
cpu_cfg = (
OpenVINOConfig(**{**self.config.model_dump()})
if hasattr(self.config, "model_dump")
else self.config
)
# Ensure device is CPU and use conservative CPU threading options
cpu_cfg = OpenVINOConfig(
device="CPU",
cache_dir=self.config.cache_dir,
enable_quantization=self.config.enable_quantization,
throughput_streams=1,
max_threads=self.config.max_threads,
)
logger.info(
"Reloading model with CPU-only OpenVINO config for safe compilation"
)
# Try to reload using the existing saved model path if possible
try:
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(# type: ignore
self.model_path, ov_config=cpu_cfg.to_ov_config(), compile=False
) # type: ignore
except Exception:
# If loading the saved model failed, try loading without ov_config
self.ov_model = OVModelForSpeechSeq2Seq.from_pretrained(# type: ignore
self.model_path, compile=False
) # type: ignore
# Compile on CPU
if self.ov_model is not None:
self.ov_model.to("CPU") # type: ignore
# Provide CPU-only ov_config if supported
try:
self.ov_model.compile() # type: ignore
except Exception as compile_cpu_e:
logger.warning(
f"CPU compile with CPU ov_config failed, retrying default compile: {compile_cpu_e}"
)
self.ov_model.compile() # type: ignore
self._warmup_model()
logger.info("Model compiled for CPU successfully")
except Exception as cpu_e:
logger.error(f"Failed to compile for CPU as well: {cpu_e}")
raise
def _warmup_model(self) -> None:
"""Warmup model for consistent GPU performance."""
if self.ov_model is None or self.processor is None:
return
try:
logger.info("Warming up model...")
dummy_audio = np.random.randn(16000).astype(np.float32) # 1 second
dummy_features = self.processor(# type: ignore
dummy_audio, sampling_rate=16000, return_tensors="pt"
).input_features
# Run warmup iterations
for i in range(3):
_ = self.ov_model.generate(dummy_features, max_new_tokens=10)# type: ignore
if i == 0:
logger.debug("First warmup iteration completed")
except Exception as e:
logger.warning(f"Model warmup failed: {e}")
def decode(
self, token_ids: torch.Tensor, skip_special_tokens: bool = True
) -> List[str]:
"""Decode token IDs to text."""
if self.processor is None:
raise RuntimeError("Processor not initialized")
return self.processor.batch_decode(# type: ignore
token_ids, skip_special_tokens=skip_special_tokens
) # type: ignore
# Global model instance with deferred loading
_whisper_model: Optional[OpenVINOWhisperModel] = None
_audio_processors: Dict[str, "OptimizedAudioProcessor"] = {}
_send_chat_func: Optional[Callable[[ChatMessageModel], Awaitable[None]]] = None
_create_chat_message_func: Optional[Callable[[str, Optional[str]], ChatMessageModel]] = None
# Model loading status for video display
_model_loading_status: str = "Not loaded"
_model_loading_progress: float = 0.0
# Raw audio buffer for immediate graphing (now handled by WaveformVideoTrack.buffer)
def _ensure_model_loaded(device: str = _device) -> OpenVINOWhisperModel:
"""Ensure the global model is loaded."""
global _whisper_model, _model_loading_status, _model_loading_progress
if _whisper_model is None:
setup_intel_arc_environment()
logger.info(f"Loading OpenVINO Whisper model: {_model_id}")
_model_loading_status = "Loading model..."
_model_loading_progress = 0.1
_whisper_model = OpenVINOWhisperModel(
model_id=_model_id, config=_ov_config, device=device
)
_model_loading_status = "Model loaded successfully"
_model_loading_progress = 1.0
logger.info("OpenVINO Whisper model loaded successfully")
return _whisper_model
def extract_input_features(audio_array: AudioArray, sampling_rate: int) -> torch.Tensor:
"""Extract input features from audio array optimized for OpenVINO."""
ov_model = _ensure_model_loaded()
if ov_model.processor is None:
raise RuntimeError("Processor not initialized")
inputs = ov_model.processor(# type: ignore
audio_array,
sampling_rate=sampling_rate,
return_tensors="pt",
) # type: ignore
return inputs.input_features # type: ignore
class VoiceActivityDetector(BaseModel):
has_speech: bool = False
energy: float = 0.0
zcr: float = 0.0
centroid: float = 0.0
def simple_robust_vad(
audio_data: AudioArray,
energy_threshold: float = 0.01,
sample_rate: int = 16000,
) -> VoiceActivityDetector:
"""Simplified robust VAD."""
# Energy-based detection (RMS)
energy = np.sqrt(np.mean(audio_data**2))
# Zero-crossing rate
signs = np.sign(audio_data)
signs[signs == 0] = 1
zcr = np.sum(np.abs(np.diff(signs))) / (2 * len(audio_data))
# Relaxed speech detection - use OR instead of AND for some conditions
has_speech = (
energy > energy_threshold # Primary condition
or (energy > energy_threshold * 0.5 and zcr > 0.05) # Secondary condition
)
return VoiceActivityDetector(
has_speech=has_speech, energy=energy, zcr=zcr, centroid=0.0
)
def enhanced_vad(
audio_data: AudioArray,
energy_threshold: float = 0.01,
zcr_threshold: float = 0.1,
sample_rate: int = 16000,
) -> VoiceActivityDetector:
"""Enhanced VAD using multiple features.
Returns:
tuple: (has_speech, metrics_dict)
"""
# Energy-based detection
energy = np.sqrt(np.mean(audio_data**2))
# Zero-crossing rate for speech detection
signs = np.sign(audio_data)
signs[signs == 0] = 1 # Handle zeros
zcr = np.sum(np.abs(np.diff(signs))) / (2 * len(audio_data))
# Spectral centroid for voice vs noise discrimination
fft = np.fft.rfft(audio_data)
magnitude = np.abs(fft)
freqs = np.fft.rfftfreq(len(audio_data), 1 / sample_rate)
if np.sum(magnitude) > 0:
centroid = np.sum(freqs * magnitude) / np.sum(magnitude)
else:
centroid = 0
# Combined decision with configurable thresholds
has_speech = (
energy > energy_threshold
and zcr > zcr_threshold
and 200 < centroid < 3000 # Human speech frequency range
)
return VoiceActivityDetector(
has_speech=has_speech, energy=energy, zcr=zcr, centroid=centroid
)
class OptimizedAudioProcessor:
"""Optimized audio processor for Intel Arc B580 with reduced latency."""
def __init__(
self, peer_name: str, send_chat_func: Callable[[ChatMessageModel], Awaitable[None]], create_chat_message_func: Callable[[str, Optional[str]], ChatMessageModel]
):
self.peer_name = peer_name
self.send_chat_func = send_chat_func
self.create_chat_message_func = create_chat_message_func
# Audio processing settings (use defaults, can be overridden per instance)
self.sample_rate = 16000 # Default Whisper sample rate
self.chunk_duration_ms = 100 # Default chunk duration
self.chunk_size = int(self.sample_rate * self.chunk_duration_ms / 1000)
# Silence handling parameters
self.max_silence_frames = 30 # Default max silence frames
self.max_trailing_silence_frames = 5 # Default trailing silence frames
# VAD settings (use defaults, can be overridden per instance)
self.vad_energy_threshold = 0.005
self.vad_zcr_min = 0.02
self.vad_zcr_max = 0.8
self.vad_spectral_centroid_min = 200
self.vad_spectral_centroid_max = 4000
self.vad_spectral_rolloff_threshold = 3000
self.vad_minimum_duration = 0.2
self.vad_max_history = 8
self.vad_noise_floor_energy = 0.001
self.vad_adaptation_rate = 0.05
self.vad_harmonic_threshold = 0.15
# Normalization settings
self.normalization_enabled = True # Default normalization enabled
self.normalization_target_peak = 0.7 # Default target peak
self.max_normalization_gain = 10.0 # Default max gain
# Initialize visualization buffer if not already done
if self.peer_name not in WaveformVideoTrack.buffer:
WaveformVideoTrack.buffer[self.peer_name] = np.array([], dtype=np.float32)
# Optimized buffering parameters
self.buffer_size = self.chunk_size * 50
# Circular buffer for zero-copy operations
self.audio_buffer = np.zeros(self.buffer_size, dtype=np.float32)
self.write_ptr = 0
self.read_ptr = 0
# Silence handling parameters
self.silence_frames: int = 0
# Enhanced VAD parameters with EMA for noise adaptation
self.advanced_vad = AdvancedVAD(sample_rate=self.sample_rate)
# Track maximum observed absolute amplitude for this input stream
# This is used optionally to normalize incoming audio to the "observed"
# maximum which helps models expect a consistent level across peers.
# It's intentionally permissive and capped to avoid amplifying noise.
self.max_observed_amplitude: float = 1e-6
# Processing state
self.current_phrase_audio = np.array([], dtype=np.float32)
self.transcription_history: List[TranscriptionHistoryItem] = []
self.last_activity_time = time.time()
self.last_audio_time = time.time() # Track when any audio chunk is received
self.final_transcription_pending = False # Flag to prevent accumulating audio during final transcription
# Current transcription message for refinements
self.current_message: Optional[ChatMessageModel] = None
# Async processing
self.processing_queue: asyncio.Queue[AudioQueueItem] = asyncio.Queue(maxsize=10)
self.is_running = True
# Start async processing task
try:
self.main_loop = asyncio.get_running_loop()
asyncio.create_task(self._async_processing_loop())
# Start inactivity watchdog to ensure finalization when frames stop arriving
try:
asyncio.create_task(self._silence_watchdog())
except Exception:
logger.debug(f"Could not start silence watchdog task for {self.peer_name}")
logger.info(f"Started async processing for {self.peer_name}")
# Lock to serialize model.generate calls (OpenVINO model may not
# be reentrant across concurrent generate calls).
try:
self._generate_lock = asyncio.Lock()
except Exception:
self._generate_lock = None
except RuntimeError:
# Fallback to thread-based processing
self.main_loop = None
self.processor_thread = threading.Thread(
target=self._thread_processing_loop, daemon=True
)
self.processor_thread.start()
logger.warning(f"Using thread-based processing for {self.peer_name}")
# For thread-fallback create a thread lock used if asyncio lock is unavailable
self._generate_lock = threading.Lock()
logger.info(f"OptimizedAudioProcessor initialized for {self.peer_name}")
async def _silence_watchdog(self) -> None:
"""Watch for inactivity (no frames arriving) and queue a final transcription.
This runs as a lightweight task and uses `last_audio_time` which is
updated on any received audio frame. This makes finalization robust in
the case where the remote peer simply stops sending frames (no
non-speech frames will arrive to increment `silence_frames`).
"""
logger.debug(f"Silence watchdog started for {self.peer_name}")
try:
while self.is_running:
await asyncio.sleep(0.5)
try:
if (
len(self.current_phrase_audio) > 0
and time.time() - self.last_audio_time > INACTIVITY_TIMEOUT
):
logger.info(
f"Silence watchdog: no audio for {time.time() - self.last_audio_time:.2f}s, queuing final for {self.peer_name}"
)
self._queue_final_transcription()
except Exception as e:
logger.debug(f"Silence watchdog error for {self.peer_name}: {e}")
finally:
logger.debug(f"Silence watchdog exiting for {self.peer_name}")
def add_audio_data(self, audio_data: AudioArray) -> None:
"""Add audio data with enhanced Voice Activity Detection, preventing leading silence."""
if not self.is_running or len(audio_data) == 0:
logger.error("Processor not running or empty audio data")
return
# Update last audio time whenever any audio is received
self.last_audio_time = time.time()
# Update max observed amplitude (used later for optional normalization)
try:
peak = float(np.max(np.abs(audio_data))) if audio_data.size > 0 else 0.0
if peak > self.max_observed_amplitude:
self.max_observed_amplitude = float(peak)
except Exception:
# Be defensive - don't fail audio ingestion for amplitude tracking
pass
is_speech, vad_metrics = self.advanced_vad.analyze_frame(audio_data)
# Update visualization status
WaveformVideoTrack.speech_status[self.peer_name] = {
'is_speech': is_speech,
**vad_metrics
}
# Log VAD decisions periodically
if hasattr(self, '_vad_log_counter'):
self._vad_log_counter += 1
else:
self._vad_log_counter = 0
if self._vad_log_counter % 50 == 0: # Every 5 seconds at 100ms chunks
logger.info(f"VAD Decision for {self.peer_name}: {is_speech}, "
f"Energy: {vad_metrics['energy']:.3f}, "
f"Harmonicity: {vad_metrics['harmonicity']:.2f}, "
f"Noise floor: {vad_metrics['noise_floor_energy']:.4f}")
# Speech processing logic
if is_speech:
self.silence_frames = 0
self.last_activity_time = time.time()
self.final_transcription_pending = False # Reset flag when new speech is detected
self._add_to_circular_buffer(audio_data)
elif (len(self.current_phrase_audio) > 0 and
self.silence_frames < self.max_trailing_silence_frames):
self.silence_frames += 1
self._add_to_circular_buffer(audio_data)
else:
self.silence_frames += 1
if (self.silence_frames > self.max_silence_frames and
len(self.current_phrase_audio) > 0):
self._queue_final_transcription()
return # Drop non-speech audio
# Check if we should process
if self._available_samples() >= self.chunk_size:
self._queue_for_processing()
def _add_to_circular_buffer(self, audio_data: AudioArray) -> None:
"""Add data to circular buffer efficiently."""
chunk_len = len(audio_data)
if self.write_ptr + chunk_len <= self.buffer_size:
# Simple case - no wraparound
self.audio_buffer[self.write_ptr : self.write_ptr + chunk_len] = audio_data
else:
# Wraparound case
first_part = self.buffer_size - self.write_ptr
self.audio_buffer[self.write_ptr :] = audio_data[:first_part]
self.audio_buffer[: chunk_len - first_part] = audio_data[first_part:]
self.write_ptr = (self.write_ptr + chunk_len) % self.buffer_size
def _available_samples(self) -> int:
"""Calculate available samples in circular buffer."""
if self.write_ptr >= self.read_ptr:
return self.write_ptr - self.read_ptr
else:
return self.buffer_size - self.read_ptr + self.write_ptr
def _extract_chunk(self, size: int) -> AudioArray:
"""Extract chunk from circular buffer."""
if self.read_ptr + size <= self.buffer_size:
chunk = self.audio_buffer[self.read_ptr : self.read_ptr + size].copy()
else:
first_part = self.buffer_size - self.read_ptr
chunk = np.concatenate(
[
self.audio_buffer[self.read_ptr :],
self.audio_buffer[: size - first_part],
]
)
self.read_ptr = (self.read_ptr + size) % self.buffer_size
return chunk.astype(np.float32)
def _queue_for_processing(self) -> None:
"""Queue audio chunk for processing."""
available = self._available_samples()
if available < self.chunk_size:
return
# Extract chunk for processing
chunk = self._extract_chunk(self.chunk_size)
# Create queue item
queue_item = AudioQueueItem(audio=chunk, timestamp=time.time())
# Queue for processing
if self.main_loop:
try:
self.processing_queue.put_nowait(queue_item)
except asyncio.QueueFull:
logger.warning(
f"Processing queue full for {self.peer_name}, dropping chunk"
)
else:
# Thread-based fallback
try:
threading_queue = getattr(self, "_threading_queue", None)
if threading_queue:
threading_queue.put_nowait(queue_item)
except Exception as e:
logger.warning(f"Threading queue issue for {self.peer_name}: {e}")
def _queue_final_transcription(self) -> None:
"""Queue final transcription of current phrase."""
# Always attempt to include any remaining samples in the circular
# buffer when creating a final transcription. Because the thread
# watchdog may call this method from a non-event-loop thread, we
# schedule the actual drain + final transcription on the configured
# main event loop. This avoids concurrent access to the circular
# buffer pointers and ensures the final audio contains trailing
# partial chunks that haven't reached `chunk_size` yet.
async def _queue_final_coroutine():
# Prevent duplicate finals: if a final is already pending, skip
if getattr(self, "final_transcription_pending", False):
logger.info(f"Final transcription already pending for {self.peer_name}, skipping duplicate final queue.")
return
self.final_transcription_pending = True
try:
# Drain any samples remaining in the circular buffer
available = 0
try:
available = self._available_samples()
if available > 0:
tail = self._extract_chunk(available)
if tail.size > 0:
self.current_phrase_audio = np.concatenate(
[self.current_phrase_audio, tail]
)
except Exception as e:
logger.debug(f"Failed to drain circular buffer for final: {e}")
if len(self.current_phrase_audio) > self.sample_rate * 0.5:
logger.info(f"Queueing final transcription for {self.peer_name} (drained={available if 'available' in locals() else 0})")
# Send an immediate lightweight final marker so the UI receives a quick final event while the heavy generate runs in the background.
try:
marker_text = f"{self.peer_name}: (finalizing...)"
message_id = self.current_message.id if self.current_message is not None else None
cm = self.create_chat_message_func(marker_text, message_id)
if self.current_message is None:
try:
self.current_message = cm
except Exception:
pass
await self.send_chat_func(cm)
logger.info(f"{self.peer_name}: sent immediate final marker")
except Exception as e:
logger.debug(f"Failed to send final marker for {self.peer_name}: {e}")
# Run the blocking final transcription in a coroutine that offloads the heavy work to a threadpool (existing helper handles this). We await it here so we can clear state afterwards in the same coroutine context.
try:
await self._blocking_transcribe_and_send(
self.current_phrase_audio.copy(), is_final=True
)
except Exception as e:
logger.error(f"Error running blocking final transcription coroutine: {e}")
# Clear current phrase buffer after scheduling/completing final
self.current_phrase_audio = np.array([], dtype=np.float32)
finally:
# Ensure the pending flag is cleared if something went wrong
try:
self.final_transcription_pending = False
except Exception:
pass
# If we have an event loop available, schedule the coroutine there so
# buffer operations happen on the loop and avoid races with the
# producer side. If no main loop is available, fall back to running
# the coroutine via create_task (best-effort) or thread executor.
try:
if self.main_loop is not None:
try:
asyncio.run_coroutine_threadsafe(_queue_final_coroutine(), self.main_loop)
return
except Exception as e:
logger.debug(f"Failed to schedule final coroutine on main loop: {e}")
# Fallback: try to create a task on the current loop
try:
asyncio.create_task(_queue_final_coroutine())
return
except Exception:
# As a last resort, run the coroutine synchronously in a new
# event loop (blocking) so a final is still produced.
import asyncio as _asyncio
try:
_loop = _asyncio.new_event_loop()
_asyncio.set_event_loop(_loop)
_loop.run_until_complete(_queue_final_coroutine())
finally:
try:
_asyncio.set_event_loop(None)
except Exception:
pass
except Exception as e:
logger.error(f"Unexpected error scheduling final transcription: {e}")
async def _blocking_transcribe_and_send(
self, audio_array: AudioArray, is_final: bool, language: str = "en"
) -> None:
"""Run the heavy generate+decode work inside a threadpool, then send the
chat message on the event loop. This reduces reentrancy and resource
contention with streaming transcriptions.
"""
loop = asyncio.get_event_loop()
def blocking_work(audio_in: AudioArray) -> tuple[str, float]:
try:
# Ensure model is loaded in this thread/process
ov_model = _ensure_model_loaded()
# Extract features (this is relatively cheap but keep on thread)
input_features = ov_model.processor(# type: ignore
audio_in, sampling_rate=self.sample_rate, return_tensors="pt"
).input_features # type: ignore
# Perform generation (blocking)
# Use the same generation configuration as the async path
# (higher-quality beam search) to avoid weaker final
# transcriptions when using the blocking path.
gen_cfg = GenerationConfig(
max_length=448,
num_beams=6,
no_repeat_ngram_size=3,
use_cache=True,
early_stopping=True,
max_new_tokens=128,
)
# Serialize access to the underlying OpenVINO generation call
# to avoid concurrency problems with the OpenVINO runtime.
with _generate_global_lock:
gen_out = ov_model.ov_model.generate(# type: ignore
input_features, generation_config=gen_cfg# type: ignore
)
# Try to extract sequences if present
if hasattr(gen_out, "sequences"): # type: ignore
ids = gen_out.sequences # type: ignore
else:
ids = gen_out # type: ignore
# Decode
text: str = ""
try:
text = ov_model.processor.batch_decode(ids, skip_special_tokens=True)[0].strip() # type: ignore
except Exception:
text = ""
return text, 0.0 # type: ignore
except Exception as e:
logger.error(f"Blocking transcription failed for {self.peer_name}: {e}", exc_info=True)
return "", 0.0
try:
# Run blocking work in executor
transcription, _ = await loop.run_in_executor(None, blocking_work, audio_array)
if transcription:
# Build message and send on event loop
status_marker = "" if is_final else "🎤"
type_marker = "" if is_final else " [streaming]"
message_text = f"{status_marker} {self.peer_name}{type_marker}: {transcription} (blocking final)"
# Reuse existing message id for final update when possible
message_id = self.current_message.id if self.current_message is not None else None
chat_message = self.create_chat_message_func(message_text, message_id)
await self.send_chat_func(chat_message)
# After sending final, clear current_message so streaming restarts cleanly
try:
self.current_message = None
except Exception:
pass
logger.info(f"{self.peer_name}: blocking final transcription sent: '{transcription}'")
else:
# If decode failed/returned empty, fallback to the most recent
# streaming transcription from history (if any) and send it as
# the final message. This ensures clients get a final marker.
fallback_text = None
try:
if self.transcription_history:
# Take last non-final streaming message if present
for h in reversed(self.transcription_history):
if not h.is_final:
# Extract raw transcription portion from stored message
fallback_text = h.message.split(": ", 1)[-1].split(" (🚀")[0]
break
# If none non-final found, take most recent entry
if fallback_text is None:
fallback_text = self.transcription_history[-1].message.split(": ", 1)[-1].split(" (🚀")[0]
except Exception:
fallback_text = None
if fallback_text:
message_text = f"{self.peer_name}: {fallback_text} (final - fallback)"
message_id = self.current_message.id if self.current_message is not None else None
chat_message = self.create_chat_message_func(message_text, message_id)
await self.send_chat_func(chat_message)
try:
self.current_message = None
except Exception:
pass
logger.info(f"{self.peer_name}: blocking final fallback sent: '{fallback_text}'")
else:
logger.info(f"{self.peer_name}: blocking final transcription produced no text and no fallback available")
finally:
# Always clear the pending flag when the blocking final finishes
try:
self.final_transcription_pending = False
except Exception:
pass
async def _async_processing_loop(self) -> None:
"""Async processing loop for audio chunks."""
logger.info(f"Started async processing loop for {self.peer_name}")
while self.is_running:
try:
# Get audio chunk
audio_item = await asyncio.wait_for(
self.processing_queue.get(), timeout=1.0
)
# Add to current phrase
if not self.final_transcription_pending:
self.current_phrase_audio = np.concatenate(
[self.current_phrase_audio, audio_item.audio]
)
# Check if we should transcribe
phrase_duration = len(self.current_phrase_audio) / self.sample_rate
if phrase_duration >= 1.0: # Transcribe every 1 second
logger.info(f"Transcribing for {self.peer_name} (1s interval)")
await self._transcribe_and_send(
self.current_phrase_audio.copy(), is_final=False
)
except asyncio.TimeoutError:
# Check for final transcription on timeout; use last_audio_time so
# we also detect the case where frames simply stopped arriving.
if (
len(self.current_phrase_audio) > 0
and time.time() - self.last_audio_time > INACTIVITY_TIMEOUT
):
logger.info(
f"Final transcription timeout for {self.peer_name} (asyncio.TimeoutError, inactivity)"
)
# Avoid duplicate finals: if a final is already pending
# (for example the blocking final was queued), skip scheduling
# another final. Otherwise set the pending flag and run the
# final transcription.
if not self.final_transcription_pending:
# Drain any remaining circular-buffer samples into the
# current phrase so trailing partial packets are included
# in the final transcription.
try:
available = self._available_samples()
if available > 0:
tail = self._extract_chunk(available)
if tail.size > 0:
self.current_phrase_audio = np.concatenate([
self.current_phrase_audio, tail
])
except Exception as e:
logger.debug(f"Failed to drain circular buffer before async final: {e}")
self.final_transcription_pending = True
await self._transcribe_and_send(
self.current_phrase_audio.copy(), is_final=True
)
else:
logger.debug(f"Final already pending for {self.peer_name}; skipping async final")
self.current_phrase_audio = np.array([], dtype=np.float32)
except Exception as e:
logger.error(
f"Error in async processing loop for {self.peer_name}: {e}"
)
# Final transcription for any remaining audio
if len(self.current_phrase_audio) > 0 and not self.final_transcription_pending:
logger.info(f"Final transcription for remaining audio in async loop for {self.peer_name}")
await self._transcribe_and_send(
self.current_phrase_audio.copy(), is_final=True
)
self.current_phrase_audio = np.array([], dtype=np.float32)
self.final_transcription_pending = False
logger.info(f"Async processing loop ended for {self.peer_name}")
def _thread_processing_loop(self) -> None:
"""Thread-based processing loop fallback."""
self._threading_queue: Queue[AudioQueueItem] = Queue(maxsize=10)
logger.info(f"Started thread processing loop for {self.peer_name}")
while self.is_running:
try:
audio_item = self._threading_queue.get(timeout=1.0)
# Add to current phrase
if not self.final_transcription_pending:
self.current_phrase_audio = np.concatenate(
[self.current_phrase_audio, audio_item.audio]
)
# Check if we should transcribe
phrase_duration = len(self.current_phrase_audio) / self.sample_rate
if phrase_duration >= 1.0:
if self.main_loop:
logger.info(
f"Transcribing from thread for {self.peer_name} (_thread_processing_loop > 1s interval)"
)
asyncio.run_coroutine_threadsafe(
self._transcribe_and_send(
self.current_phrase_audio.copy(), is_final=False
),
self.main_loop,
)
except Empty:
# Check for final transcription using last_audio_time so we react
# if frames stop arriving entirely.
if (
len(self.current_phrase_audio) > 0
and time.time() - self.last_audio_time > INACTIVITY_TIMEOUT
):
if self.main_loop:
logger.info(
f"Final transcription from thread for {self.peer_name} (inactivity)"
)
# Delegate to the safe finalization path which drains the
# circular buffer on the main loop and schedules the heavy
# blocking transcription there. This avoids concurrent
# buffer access races between threads.
try:
self._queue_final_transcription()
except Exception:
# As a fallback, try to schedule the transcription
# directly on the main loop (best-effort).
try:
asyncio.run_coroutine_threadsafe(
self._transcribe_and_send(
self.current_phrase_audio.copy(), is_final=True
),
self.main_loop,
)
except Exception as e:
logger.debug(f"Failed to schedule thread final fallback: {e}")
self.current_phrase_audio = np.array([], dtype=np.float32)
except Exception as e:
logger.error(
f"Error in thread processing loop for {self.peer_name}: {e}"
)
# Final transcription for any remaining audio
if len(self.current_phrase_audio) > 0 and not self.final_transcription_pending:
if self.main_loop:
logger.info(f"Final transcription for remaining audio in thread loop for {self.peer_name}")
asyncio.run_coroutine_threadsafe(
self._transcribe_and_send(
self.current_phrase_audio.copy(), is_final=True
),
self.main_loop,
)
self.current_phrase_audio = np.array([], dtype=np.float32)
self.final_transcription_pending = False
def _start_thread_watchdog(self) -> None:
"""Start a lightweight thread-based watchdog when using the thread fallback.
It periodically checks `last_audio_time` and queues final transcription
if inactivity exceeds INACTIVITY_TIMEOUT.
"""
if hasattr(self, "_thread_watchdog") and self._thread_watchdog:
return
def watchdog():
logger.debug(f"Thread watchdog started for {self.peer_name}")
try:
while self.is_running:
time.sleep(0.5)
try:
if (
len(self.current_phrase_audio) > 0
and time.time() - self.last_audio_time > INACTIVITY_TIMEOUT
):
logger.info(
f"Thread watchdog: no audio for {time.time() - self.last_audio_time:.2f}s, queuing final for {self.peer_name}"
)
self._queue_final_transcription()
except Exception as e:
logger.debug(f"Thread watchdog error for {self.peer_name}: {e}")
finally:
logger.debug(f"Thread watchdog exiting for {self.peer_name}")
self._thread_watchdog = threading.Thread(target=watchdog, daemon=True)
self._thread_watchdog.start()
async def _transcribe_and_send(
self, audio_array: AudioArray, is_final: bool, language: str = "en"
) -> None:
"""
Transcribe raw numpy audio data using OpenVINO Whisper.
Parameters:
- audio_array: 1D numpy array containing mono PCM data at 16 kHz.
- is_final: whether this is a final transcription (True) or interim (False)
- language: language code for transcription (default 'en' for English)
"""
if audio_array.ndim != 1:
raise ValueError("Expected mono audio as a 1D numpy array.")
# Do NOT reset final_transcription_pending here; keep it set until the
# final transcription task completes to avoid races where new audio is
# accumulated while a final transcription was requested.
transcription_start = time.time()
transcription_type = "final" if is_final else "streaming"
try:
audio_duration = len(audio_array) / self.sample_rate
# Compute basic energy/peak metrics for filtering decisions
audio_rms = float(np.sqrt(np.mean(audio_array**2)))
audio_peak = float(np.max(np.abs(audio_array))) if audio_array.size > 0 else 0.0
# Short-burst filtering: drop very short bursts that are likely noise.
# - If duration < 0.5s and RMS is very low -> drop
# - If duration < 0.8s and peak is very small relative to the
# max observed amplitude -> drop. This prevents single-packet
# random noises from becoming transcriptions.
short_duration_threshold = 0.5
relaxed_short_duration = 0.8
rms_min_threshold = 0.002
relative_peak_min_ratio = 0.05
if audio_duration < short_duration_threshold and audio_rms < rms_min_threshold:
logger.debug(
f"Skipping {transcription_type} transcription: short & quiet ({audio_duration:.2f}s, RMS {audio_rms:.6f})"
)
return
# If we have observed a stronger level on this stream, require a
# sensible fraction of that to consider this burst valid.
max_amp = getattr(self, "max_observed_amplitude", 0.0) or 0.0
if audio_duration < relaxed_short_duration and max_amp > 0.0:
rel = audio_peak / (max_amp + 1e-12)
if rel < relative_peak_min_ratio:
logger.debug(
f"Skipping {transcription_type} transcription: short burst with low relative peak ({audio_duration:.2f}s, rel {rel:.3f})"
)
return
# Very quiet audio - skip entirely
if audio_rms < 0.001:
logger.debug(
f"Skipping {transcription_type} transcription: too quiet (RMS: {audio_rms:.6f})"
)
return
logger.info(
f"🎬 OpenVINO transcription ({transcription_type}) started: {audio_duration:.2f}s, RMS: {audio_rms:.4f}"
)
# Optionally normalize audio prior to feature extraction. We use
# the historical maximum observed amplitude for this stream to
# compute a conservative gain. The gain is clamped to avoid
# amplifying noise excessively.
audio_for_model = audio_array
try:
if getattr(self, "normalization_enabled", False):
stream_max = getattr(self, "max_observed_amplitude", 0.0) or 0.0
# Use the larger of observed max and current peak to avoid
# over-scaling when current chunk is the loudest.
denom = max(stream_max, audio_peak, 1e-12)
gain = float(self.normalization_target_peak) / denom
# Clamp gain
gain = max(min(gain, float(self.max_normalization_gain)), 0.25)
if abs(gain - 1.0) > 1e-3:
logger.debug(f"Applying normalization gain {gain:.3f} for {self.peer_name}")
audio_for_model = np.clip(audio_array * gain, -0.999, 0.999).astype(np.float32)
except Exception as e:
logger.debug(f"Normalization step failed for {self.peer_name}: {e}")
# Extract features for OpenVINO
input_features = extract_input_features(audio_for_model, self.sample_rate)
# logger.info(f"Features extracted for OpenVINO: {input_features.shape}")
# GPU inference with OpenVINO
ov_model = _ensure_model_loaded()
generation_config = GenerationConfig(
# Quality parameters
max_length=448,
num_beams=6, # Increase from 4 for better quality (slower)
# temperature=0.8, # Set to 0 for deterministic, best-guess output -- not supported in OpenVINO
# "length_penalty": 1.0, # Adjust to favor longer/shorter sequences
no_repeat_ngram_size=3,
# Confidence and alternatives
# output_score=True, # Get token probabilities -- not supported in OpenVINO
# return_dict_in_generate=True, # Get detailed output -- not supported in OpenVINO
output_attentions=False, # Set True if you need attention weights
num_return_sequences=1, # Set >1 to get alternatives
max_new_tokens=128, # Limit response length
# Task settings: Cannot specify `task` or `language` for an English-only model.
# # If the model is intended to be multilingual, pass `is_multilingual=True` to generate,
# # or update the generation config.ValueError: Cannot specify `task` or `language` for
# # an English-only model. If the model is intended to be multilingual, pass
# # `is_multilingual=True` to generate, or update the generation config
# language=language,
# task="transcribe",
# Performance vs quality tradeoffs
early_stopping=True, # Stop when EOS token is found
use_cache=True, # Speed up decoding
# Threshold parameters
# logprob_threshold=-1.0, # Filter tokens below this log probability -- not supported in OpenVINO
compression_ratio_threshold=2.4, # Reject if compression ratio too high
# no_speech_threshold=0.6, # Threshold for detecting non-speech -- not supported in OpenVINO
)
# Serialize calls to model.generate to avoid reentrancy issues and
# add diagnostic logging so we can see whether generate/decoding
# completes for final transcriptions.
generation_output = None
try:
if is_final:
logger.info(f"{self.peer_name}: attempting to acquire generate lock (final)")
else:
logger.debug(f"{self.peer_name}: attempting to acquire generate lock")
if hasattr(self, "_generate_lock") and isinstance(self._generate_lock, asyncio.Lock):
await self._generate_lock.acquire()
try:
if is_final:
logger.info(f"{self.peer_name}: calling model.generate (async lock) (final)")
else:
logger.debug(f"{self.peer_name}: calling model.generate (async lock)")
generation_output = ov_model.ov_model.generate( # type: ignore
input_features, generation_config=generation_config
)
finally:
self._generate_lock.release()
elif hasattr(self, "_generate_lock") and isinstance(self._generate_lock, threading.Lock):
with self._generate_lock:
if is_final:
logger.info(f"{self.peer_name}: calling model.generate (thread lock) (final)")
else:
logger.debug(f"{self.peer_name}: calling model.generate (thread lock)")
generation_output = ov_model.ov_model.generate( # type: ignore
input_features, generation_config=generation_config
)
else:
if is_final:
logger.info(f"{self.peer_name}: calling model.generate (no lock) (final)")
else:
logger.debug(f"{self.peer_name}: calling model.generate (no lock)")
generation_output = ov_model.ov_model.generate( # type: ignore
input_features, generation_config=generation_config
)
if is_final:
logger.info(f"{self.peer_name}: model.generate complete (final) (type={type(generation_output)})")
else:
logger.debug(f"{self.peer_name}: model.generate complete (type={type(generation_output)})")
except Exception as e:
logger.error(f"{self.peer_name}: model.generate failed: {e}", exc_info=True)
raise
# Many generate implementations return an object with a
# `.sequences` attribute, so prefer that when available.
if hasattr(generation_output, "sequences"):
generated_ids = generation_output.sequences # type: ignore
else:
generated_ids = generation_output
# # Extract transcription and scores
# generated_ids = generation_output.sequences
# # Get confidence scores if available
# if hasattr(generation_output, "scores") and generation_output.scores:
# # Calculate average confidence
# token_probs = []
# for score in generation_output.scores:
# probs = torch.nn.functional.softmax(score, dim=-1)
# max_probs = torch.max(probs, dim=-1).values
# token_probs.extend(max_probs.cpu().numpy())
# avg_confidence = np.mean(token_probs) if token_probs else 0.0
# min_confidence = np.min(token_probs) if token_probs else 0.0
# else:
# avg_confidence = min_confidence = 0.0
# Decode text
# Primary decode attempt
transcription: str = ""
try:
transcription = ov_model.processor.batch_decode(# type: ignore
generated_ids, skip_special_tokens=True
)[0].strip() # type: ignore
except Exception as decode_e:
logger.warning(f"{self.peer_name}: primary decode failed: {decode_e}")
# Fallback: if decode produced empty result, attempt to decode
# `generation_output.sequences` (if not already used) or log details
if not transcription:
try:
if hasattr(generation_output, "sequences") and (
generated_ids is not generation_output.sequences # type: ignore
):
transcription = ov_model.processor.batch_decode(# type: ignore
generation_output.sequences, skip_special_tokens=True # type: ignore
)[0].strip() # type: ignore
except Exception as fallback_e:
logger.warning(f"{self.peer_name}: fallback decode failed: {fallback_e}")
# Diagnostic logging if we still have no transcription
if not transcription:
try:
if is_final:
logger.info(
f"{self.peer_name}: final transcription empty after decode"
)
else:
logger.debug(
f"{self.peer_name}: streaming transcription empty after decode"
)
except Exception:
logger.debug(f"{self.peer_name}: generated_ids unavailable for diagnostics")
if is_final:
logger.info(f"{self.peer_name}: decoded transcription (final): '{transcription}'")
else:
logger.debug(f"{self.peer_name}: decoded transcription: '{transcription}'")
transcription_time = time.time() - transcription_start
# Apply confidence threshold
# confidence_threshold = 0.7 # Adjustable
# if avg_confidence < confidence_threshold:
# logger.warning(
# f"Low confidence transcription ({avg_confidence:.2f}): '{transcription}'"
# )
# # Optionally retry with different parameters or skip
# if avg_confidence < 0.5:
# return # Skip very low confidence
# # Include confidence in message
# Create ChatMessageModel for transcription
if transcription:
# Create message with timing
status_marker = "" if is_final else "🎤"
type_marker = "" if is_final else " [streaming]"
timing_info = f" (🚀 {transcription_time:.2f}s)"
message_text = f"{status_marker} {self.peer_name}{type_marker}: {transcription}{timing_info}"
# Avoid duplicates for streaming updates, but always send final
# transcriptions so the UI/clients receive the final marker even
# if the text matches a recent interim result.
if is_final or not self._is_duplicate(transcription): # type: ignore
# Reuse the existing message ID when possible so the frontend
# updates the streaming message into a final message instead
# of creating a new one. If there is no current_message, a
# new message will be created (message_id=None).
message_id = self.current_message.id if self.current_message is not None else None
# Create ChatMessageModel (reusing message_id when present)
chat_message = self.create_chat_message_func(message_text, message_id)
# Update current message for streaming; for final messages
# clear the current_message after sending so future streams
# start a new message.
if not is_final:
self.current_message = chat_message
if is_final:
logger.info(f"{self.peer_name}: sending chat message (final) -> '{message_text}'")
else:
logger.debug(f"{self.peer_name}: sending chat message (streaming) -> '{message_text}'")
await self.send_chat_func(chat_message)
# Maintain or clear the current_message depending on finality.
if is_final:
# Final message should update the existing message on the client.
# After sending final, clear current_message so a future
# streaming sequence starts a fresh message.
try:
self.current_message = None
except Exception:
pass
logger.info(f"{self.peer_name}: send_chat_func completed for final message")
else:
# Streaming message remains current
try:
self.current_message = chat_message
except Exception:
pass
logger.debug(f"{self.peer_name}: send_chat_func completed for streaming message")
# Update history
self.transcription_history.append(
TranscriptionHistoryItem(
message=message_text, timestamp=time.time(), is_final=is_final
)
)
# Limit history
if len(self.transcription_history) > 10:
self.transcription_history.pop(0)
logger.info(
f"✅ OpenVINO transcription ({transcription_type}): '{transcription}' ({transcription_time:.3f}s)"
)
else:
logger.debug(
f"Skipping duplicate {transcription_type} transcription: '{transcription}'"
)
else:
logger.debug(
f"Empty or too short transcription result: '{transcription}'"
)
except Exception as e:
logger.error(
f"Error in OpenVINO {transcription_type} transcription: {e}",
exc_info=True,
)
finally:
# Only clear the pending flag after the transcription task completes
if is_final:
try:
self.final_transcription_pending = False
logger.debug(f"Cleared final_transcription_pending for {self.peer_name}")
except Exception:
pass
def _is_duplicate(self, text: str) -> bool:
"""Check if transcription is duplicate of recent ones."""
recent_texts = [
h.message.split(": ", 1)[-1].split(" (🚀")[0]
for h in self.transcription_history[-3:]
]
return text in recent_texts
def shutdown(self) -> None:
"""Shutdown the audio processor."""
logger.info(f"Shutting down OptimizedAudioProcessor for {self.peer_name}...")
self.is_running = False
# Final transcription if needed
if len(self.current_phrase_audio) > 0:
if self.main_loop:
asyncio.create_task(
self._transcribe_and_send(
self.current_phrase_audio.copy(), is_final=True
)
)
# Cleanup thread if exists
if hasattr(self, "processor_thread") and self.processor_thread.is_alive():
self.processor_thread.join(timeout=2.0)
logger.info(f"OptimizedAudioProcessor shutdown complete for {self.peer_name}")
async def calibrate_vad(
audio_processor: OptimizedAudioProcessor, calibration_duration: float = 2.0
) -> None:
"""Calibrate VAD thresholds based on ambient noise (placeholder for initial calibration)."""
logger.info(f"Calibrating VAD for {audio_processor.peer_name}...")
# Since EMA adapts on the fly, initial calibration can be minimal or skipped.
# For better initial estimate, assume first few chunks are noise (handled in add_audio_data).
await asyncio.sleep(calibration_duration)
logger.info(
f"VAD initial calibration complete: energy_threshold={audio_processor.vad_energy_threshold:.4f}"
)
class MediaClock:
"""Simple monotonic clock for media tracks."""
def __init__(self) -> None:
self.t0 = perf_counter()
def now(self) -> float:
return perf_counter() - self.t0
class WaveformVideoTrack(MediaStreamTrack):
"""Video track that renders a live waveform of the incoming audio.
The track reads the most-active `OptimizedAudioProcessor` in
`_audio_processors` and renders the last ~2s of its `current_phrase_audio`.
If no audio is available, the track will display a "No audio" message.
"""
kind = "video"
# Shared buffer for audio data
buffer: Dict[str, npt.NDArray[np.float32]] = {}
speech_status: Dict[str, Dict[str, Any]] = {}
def __init__(
self, session_name: str, width: int = 640, height: int = 480, fps: int = 15
) -> None:
super().__init__()
self.session_name = session_name
self.width = int(width)
self.height = int(height)
self.fps = int(fps)
self.clock = MediaClock()
self._next_frame_index = 0
async def next_timestamp(self) -> tuple[int, float]:
pts = int(self._next_frame_index * (1 / self.fps) * 90000)
time_base = 1 / 90000
return pts, time_base
async def recv(self) -> VideoFrame:
pts, _ = await self.next_timestamp()
# schedule frame according to clock
target_t = self._next_frame_index / self.fps
now = self.clock.now()
if target_t > now:
await asyncio.sleep(target_t - now)
self._next_frame_index += 1
frame_array: npt.NDArray[np.uint8] = np.zeros(
(self.height, self.width, 3), dtype=np.uint8
)
# Display model loading status prominently
status_text = _model_loading_status
progress = _model_loading_progress
# Draw status background (increased height for larger text)
cv2.rectangle(frame_array, (0, 0), (self.width, 80), (0, 0, 0), -1)
# Draw progress bar if loading
if progress < 1.0 and "Ready" not in status_text:
bar_width = int(progress * (self.width - 40))
cv2.rectangle(frame_array, (20, 55), (20 + bar_width, 70), (0, 255, 0), -1)
cv2.rectangle(
frame_array, (20, 55), (self.width - 20, 70), (255, 255, 255), 2
)
# Draw status text (larger font)
cv2.putText(
frame_array,
f"Status: {status_text}",
(10, 35),
cv2.FONT_HERSHEY_SIMPLEX,
1.2,
(255, 255, 255),
3,
)
# Draw clock in lower right corner, right justified
current_time = time.strftime("%H:%M:%S")
(text_width, _), _ = cv2.getTextSize(
current_time, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2
)
clock_x = self.width - text_width - 10 # 10px margin from right edge
clock_y = self.height - 30 # Move to 450 for height=480
cv2.putText(
frame_array,
current_time,
(clock_x, clock_y),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(255, 255, 255),
2,
)
# Select the most active audio buffer and get its speech status
best_proc = None
best_rms = 0.0
speech_info = None
try:
for pname, arr in self.__class__.buffer.items():
try:
if len(arr) == 0:
rms = 0.0
else:
rms = float(np.sqrt(np.mean(arr**2)))
if rms > best_rms:
best_rms = rms
best_proc = (pname, arr.copy())
speech_info = self.__class__.speech_status.get(pname, {})
except Exception:
continue
except Exception:
best_proc = None
if best_proc is not None:
pname, arr = best_proc
# Use the last 2 second of audio data, padded with zeros if less
samples_needed = SAMPLE_RATE * 2 # 2 second(s)
if len(arr) <= 0:
arr_segment = np.zeros(samples_needed, dtype=np.float32)
elif len(arr) >= samples_needed:
arr_segment = arr[-samples_needed:].copy()
else:
# Pad with zeros at the beginning
arr_segment = np.concatenate(
[np.zeros(samples_needed - len(arr), dtype=np.float32), arr]
)
# Single normalization code path: normalize based on the historical
# peak observed for this stream (proc.max_observed_amplitude). This
# ensures the waveform display is consistent over time and avoids
# using the instantaneous buffer peak.
proc = None
norm = arr_segment.astype(np.float32)
try:
proc = _audio_processors.get(pname)
if proc is not None and getattr(proc, "normalization_enabled", False):
stream_max = getattr(proc, "max_observed_amplitude", 0.0) or 0.0
denom = max(stream_max, 1e-12)
gain = float(proc.normalization_target_peak) / denom
gain = max(min(gain, float(proc.max_normalization_gain)), 0.25)
if abs(gain - 1.0) > 1e-6:
norm = np.clip(arr_segment * gain, -1.0, 1.0).astype(np.float32)
else:
norm = arr_segment.astype(np.float32)
else:
norm = arr_segment.astype(np.float32)
except Exception:
# Fall back to raw samples if normalization computation fails
proc = None
norm = arr_segment.astype(np.float32)
# Map audio samples to pixels across the width
if norm.size < self.width:
padded = np.zeros(self.width, dtype=np.float32)
if norm.size > 0:
padded[-norm.size :] = norm
norm = padded
else:
block = int(np.ceil(norm.size / self.width))
norm = np.array(
[
np.mean(norm[i * block : min((i + 1) * block, norm.size)])
for i in range(self.width)
],
dtype=np.float32,
)
# For display we use the same `norm` computed above (single code
# path). Use `display_norm` alias to avoid confusion later in the
# code but don't recompute normalization.
display_norm = norm
# Draw waveform with color coding for speech detection
points: list[tuple[int, int]] = []
colors: list[tuple[int, int, int]] = [] # Color for each point
for x in range(self.width):
v = float(display_norm[x]) if x < display_norm.size and not np.isnan(display_norm[x]) else 0.0
y = int((1.0 - ((v + 1.0) / 2.0)) * (self.height - 120)) + 100
points.append((x, y))
# Color based on speech detection status
is_speech = speech_info.get('is_speech', False) if speech_info else False
energy_check = speech_info.get('energy_check', False) if speech_info else False
if is_speech:
colors.append((0, 255, 0)) # Green for detected speech
elif energy_check:
colors.append((255, 255, 0)) # Yellow for energy but not speech
else:
colors.append((128, 128, 128)) # Gray for background noise
# Draw colored waveform
if len(points) > 1:
for i in range(len(points) - 1):
cv2.line(frame_array, points[i], points[i+1], colors[i], 1)
# Draw historical peak indicator (horizontal lines at +/-(target_peak))
try:
if proc is not None and getattr(proc, "normalization_enabled", False):
target_peak = float(getattr(proc, "normalization_target_peak", 0.0))
# Ensure target_peak is within [0, 1]
target_peak = max(0.0, min(1.0, target_peak))
def _amp_to_y(a: float) -> int:
return int((1.0 - ((a + 1.0) / 2.0)) * (self.height - 120)) + 100
top_y = _amp_to_y(target_peak)
bot_y = _amp_to_y(-target_peak)
# Draw thin magenta lines across the waveform area
cv2.line(frame_array, (0, top_y), (self.width - 1, top_y), (255, 0, 255), 1)
cv2.line(frame_array, (0, bot_y), (self.width - 1, bot_y), (255, 0, 255), 1)
# Label the peak with small text near the right edge
label = f"Peak:{target_peak:.2f}"
(tw, _), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
lx = max(10, self.width - tw - 12)
ly = max(12, top_y - 6)
cv2.putText(frame_array, label, (lx, ly), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 1)
except Exception:
# Non-critical: ignore any drawing errors
pass
# Add speech detection status overlay
if speech_info:
self._draw_speech_status(frame_array, speech_info, pname)
cv2.putText(
frame_array,
f"Waveform: {pname}",
(10, self.height - 15),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(255, 255, 255),
2,
)
frame = VideoFrame.from_ndarray(frame_array, format="bgr24")
frame.pts = pts
frame.time_base = fractions.Fraction(1 / 90000).limit_denominator(1000000)
return frame
def _draw_speech_status(self, frame_array: npt.NDArray[np.uint8], speech_info: Dict[str, Any], pname: str):
"""Draw speech detection status information."""
y_offset = 100
# Main status
is_speech = speech_info.get('is_speech', False)
status_text = "SPEECH" if is_speech else "NOISE"
status_color = (0, 255, 0) if is_speech else (128, 128, 128)
adaptive_thresh = speech_info.get('adaptive_threshold', 0)
cv2.putText(frame_array, f"{pname}: {status_text} (thresh: {adaptive_thresh:.4f})",
(10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, status_color, 2)
# Detailed metrics (smaller text)
metrics = [
f"Energy: {speech_info.get('energy', 0):.3f} ({'Y' if speech_info.get('energy_check', False) else 'N'})",
f"ZCR: {speech_info.get('zcr', 0):.3f} ({'Y' if speech_info.get('zcr_check', False) else 'N'})",
f"Spectral: {'Y' if 300 < speech_info.get('centroid', 0) < 3400 else 'N'}/{'Y' if speech_info.get('rolloff', 0) < 2000 else 'N'}/{'Y' if speech_info.get('flux', 0) > 0.01 else 'N'} ({'Y' if speech_info.get('spectral_check', False) else 'N'})",
f"Harmonic: {speech_info.get('hamonicity', 0):.3f} ({'Y' if speech_info.get('harmonic_check', False) else 'N'})",
f"Temporal: ({'Y' if speech_info.get('temporal_consistency', False) else 'N'})"
]
for _, metric in enumerate(metrics):
cv2.putText(frame_array, metric,
(320, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.4,
(255, 255, 255), 1)
y_offset += 15
logic_result = "E:" + ("Y" if speech_info.get('energy_check', False) else "N")
logic_result += " Z:" + ("Y" if speech_info.get('zcr_check', False) else "N")
logic_result += " S:" + ("Y" if speech_info.get('spectral_check', False) else "N")
logic_result += " H:" + ("Y" if speech_info.get('harmonic_check', False) else "N")
logic_result += " T:" + ("Y" if speech_info.get('temporal_consistency', False) else "N")
cv2.putText(frame_array, logic_result,
(320, y_offset + 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(255, 255, 255), 1)
# Noise floor indicator
noise_floor = speech_info.get('noise_floor_energy', 0)
cv2.putText(frame_array, f"Noise Floor: {noise_floor:.4f}",
(10, y_offset + 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(200, 200, 200), 1)
async def handle_track_received(peer: Peer, track: MediaStreamTrack) -> None:
"""Handle incoming audio tracks from WebRTC peers."""
logger.info(
f"handle_track_received called for {peer.peer_name} with track kind: {track.kind}"
)
global _audio_processors, _send_chat_func
if track.kind != "audio":
logger.info(f"Ignoring non-audio track from {peer.peer_name}: {track.kind}")
return
# Initialize raw audio buffer for immediate graphing
if peer.peer_name not in WaveformVideoTrack.buffer:
WaveformVideoTrack.buffer[peer.peer_name] = np.array([], dtype=np.float32)
# Start background task to load model and create processor
async def init_processor():
global _model_loading_status, _model_loading_progress
try:
# Load model asynchronously to avoid blocking frame reading
_model_loading_status = "Initializing model loading..."
_model_loading_progress = 0.0
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, _ensure_model_loaded)
_model_loading_status = "Model loaded, creating processor..."
_model_loading_progress = 0.8
logger.info(f"Creating OptimizedAudioProcessor for {peer.peer_name}")
if _send_chat_func is None or _create_chat_message_func is None:
logger.error(f"No send function available for {peer.peer_name}")
_model_loading_status = "Error: No send function available"
_model_loading_progress = 1.0 # Hide progress bar on error
return
_audio_processors[peer.peer_name] = OptimizedAudioProcessor(
peer_name=peer.peer_name, send_chat_func=_send_chat_func, create_chat_message_func=_create_chat_message_func
)
_model_loading_status = "Ready for transcription"
_model_loading_progress = 1.0
logger.info(f"OptimizedAudioProcessor ready for {peer.peer_name}")
except Exception as e:
logger.error(f"Failed to initialize processor for {peer.peer_name}: {e}")
_model_loading_status = f"Error: {str(e)[:50]}..."
_model_loading_progress = 1.0 # Hide progress bar on error
if peer.peer_name not in _audio_processors:
if _send_chat_func is None or _create_chat_message_func is None:
logger.error(
f"Cannot create processor for {peer.peer_name}: no send_chat_func or create_chat_message_func"
)
return
# Start the processor initialization in background
asyncio.create_task(init_processor())
# Start processing frames immediately (before processor is ready)
logger.info(f"Starting frame processing loop for {peer.peer_name}")
frame_count = 0
while True:
try:
frame = await track.recv()
frame_count += 1
if frame_count % 100 == 0:
logger.debug(f"Received {frame_count} frames from {peer.peer_name}")
except MediaStreamError as e:
logger.info(f"Audio stream ended for {peer.peer_name}: {e}")
break
except Exception as e:
logger.error(f"Error receiving frame from {peer.peer_name}: {e}")
break
if isinstance(frame, AudioFrame):
try:
# Convert frame to numpy array
audio_data = frame.to_ndarray()
# Handle audio format conversion
audio_data = _process_audio_frame(audio_data, frame)
# Resample if needed
if frame.sample_rate != SAMPLE_RATE:
audio_data = _resample_audio(
audio_data, frame.sample_rate, SAMPLE_RATE
)
# Convert to float32
audio_data_float32 = audio_data.astype(np.float32)
# Update visualization buffer immediately
WaveformVideoTrack.buffer[peer.peer_name] = np.concatenate(
[WaveformVideoTrack.buffer[peer.peer_name], audio_data_float32]
)
# Limit buffer size to last 10 seconds
max_samples = SAMPLE_RATE * 10
if len(WaveformVideoTrack.buffer[peer.peer_name]) > max_samples:
WaveformVideoTrack.buffer[peer.peer_name] = (
WaveformVideoTrack.buffer[peer.peer_name][-max_samples:]
)
# Process with optimized processor if available
if peer.peer_name in _audio_processors:
audio_processor = _audio_processors[peer.peer_name]
audio_processor.add_audio_data(audio_data_float32)
except Exception as e:
logger.error(f"Error processing audio frame for {peer.peer_name}: {e}")
continue
# If processor already exists, just continue processing
audio_processor = _audio_processors[peer.peer_name]
logger.info(f"Continuing OpenVINO audio processing for {peer.peer_name}")
try:
frame_count = 0
logger.info(f"Entering frame processing loop for {peer.peer_name}")
while True:
try:
logger.debug(f"Waiting for frame from {peer.peer_name}")
frame = await track.recv()
frame_count += 1
if frame_count == 1:
logger.info(f"Received first frame from {peer.peer_name}")
elif frame_count % 50 == 0:
logger.info(f"Received {frame_count} frames from {peer.peer_name}")
except MediaStreamError as e:
logger.info(f"Audio stream ended for {peer.peer_name}: {e}")
break
except Exception as e:
logger.error(f"Error receiving frame from {peer.peer_name}: {e}")
break
if isinstance(frame, AudioFrame):
try:
# Convert frame to numpy array
audio_data = frame.to_ndarray()
# Handle audio format conversion
audio_data = _process_audio_frame(audio_data, frame)
# Resample if needed
if frame.sample_rate != SAMPLE_RATE:
audio_data = _resample_audio(
audio_data, frame.sample_rate, SAMPLE_RATE
)
# Convert to float32
audio_data_float32 = audio_data.astype(np.float32)
logger.debug(
f"Processed audio frame {frame_count} from {peer.peer_name}: {len(audio_data_float32)} samples"
)
# Process with optimized processor if available
audio_processor.add_audio_data(audio_data_float32)
except Exception as e:
logger.error(
f"Error processing audio frame for {peer.peer_name}: {e}"
)
continue
except Exception as e:
logger.error(
f"Unexpected error in audio processing for {peer.peer_name}: {e}",
exc_info=True,
)
finally:
cleanup_peer_processor(peer.peer_name)
def _process_audio_frame(
audio_data: npt.NDArray[Any], frame: AudioFrame
) -> npt.NDArray[np.float32]:
"""Process audio frame format conversion."""
# Handle stereo to mono conversion
if audio_data.ndim == 2:
if audio_data.shape[0] == 1:
audio_data = audio_data.squeeze(0)
else:
audio_data = np.mean(
audio_data, axis=0 if audio_data.shape[0] > audio_data.shape[1] else 1
)
# Normalize based on data type
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
elif audio_data.dtype == np.int32:
audio_data = audio_data.astype(np.float32) / 2147483648.0
return audio_data.astype(np.float32)
def _resample_audio(
audio_data: npt.NDArray[np.float32], orig_sr: int, target_sr: int
) -> npt.NDArray[np.float32]:
"""Resample audio efficiently."""
try:
# Handle stereo audio by converting to mono if necessary
if audio_data.ndim > 1:
audio_data = np.mean(audio_data, axis=1)
# Use high-quality resampling
resampled = librosa.resample( # type: ignore
audio_data.astype(np.float64),
orig_sr=orig_sr,
target_sr=target_sr,
res_type="kaiser_fast", # Good balance of quality and speed
)
return resampled.astype(np.float32) # type: ignore
except Exception as e:
logger.error(f"Resampling failed: {e}")
raise ValueError(
f"Failed to resample audio from {orig_sr} Hz to {target_sr} Hz: {e}"
)
# Public API functions
def agent_info() -> Dict[str, str]:
return {"name": AGENT_NAME, "description": AGENT_DESCRIPTION, "has_media": "true", "configurable": "true"}
def get_config_schema() -> Dict[str, Any]:
"""Get the configuration schema for the Whisper bot"""
return {
"bot_name": AGENT_NAME,
"version": "1.0",
"parameters": [
{
"name": "model_id",
"type": "select",
"label": "Whisper Model",
"description": "The Whisper model to use for transcription",
"default_value": _model_id,
"required": True,
"options": [
{"value": "distil-whisper/distil-large-v2", "label": "Distil-Whisper Large v2 (Fast)"},
{"value": "distil-whisper/distil-medium.en", "label": "Distil-Whisper Medium EN"},
{"value": "distil-whisper/distil-small.en", "label": "Distil-Whisper Small EN"},
{"value": "openai/whisper-large-v3", "label": "OpenAI Whisper Large v3"},
{"value": "openai/whisper-large-v2", "label": "OpenAI Whisper Large v2"},
{"value": "openai/whisper-large", "label": "OpenAI Whisper Large"},
{"value": "openai/whisper-medium", "label": "OpenAI Whisper Medium"},
{"value": "openai/whisper-small", "label": "OpenAI Whisper Small"},
{"value": "openai/whisper-base", "label": "OpenAI Whisper Base"},
{"value": "openai/whisper-tiny", "label": "OpenAI Whisper Tiny"}
]
},
{
"name": "device",
"type": "select",
"label": "Inference Device",
"description": "The device to run inference on",
"default_value": _device,
"required": True,
"options": [
{"value": "GPU.1", "label": "Intel Arc GPU (GPU.1)"},
{"value": "GPU", "label": "GPU"},
{"value": "CPU", "label": "CPU"}
]
},
{
"name": "enable_quantization",
"type": "boolean",
"label": "Enable Quantization",
"description": "Enable INT8 quantization for faster inference",
"default_value": _ov_config.enable_quantization,
"required": False
},
{
"name": "throughput_streams",
"type": "range",
"label": "Throughput Streams",
"description": "Number of parallel inference streams",
"default_value": _ov_config.throughput_streams,
"required": False,
"min_value": 1,
"max_value": 8,
"step": 1
},
{
"name": "max_threads",
"type": "range",
"label": "Max CPU Threads",
"description": "Maximum number of CPU threads for inference",
"default_value": _ov_config.max_threads,
"required": False,
"min_value": 1,
"max_value": 16,
"step": 1
},
{
"name": "sample_rate",
"type": "number",
"label": "Sample Rate",
"description": "Audio sample rate in Hz",
"default_value": SAMPLE_RATE,
"required": True,
"min_value": 8000,
"max_value": 48000
},
{
"name": "chunk_duration_ms",
"type": "range",
"label": "Chunk Duration (ms)",
"description": "Duration of audio chunks in milliseconds",
"default_value": CHUNK_DURATION_MS,
"required": False,
"min_value": 50,
"max_value": 500,
"step": 10
},
{
"name": "vad_threshold",
"type": "range",
"label": "VAD Threshold",
"description": "Voice activity detection threshold",
"default_value": 0.01,
"required": False,
"min_value": 0.001,
"max_value": 0.1,
"step": 0.001
},
{
"name": "max_silence_frames",
"type": "range",
"label": "Max Silence Frames",
"description": "Maximum frames of silence before stopping",
"default_value": MAX_SILENCE_FRAMES,
"required": False,
"min_value": 10,
"max_value": 100,
"step": 5
},
{
"name": "max_trailing_silence_frames",
"type": "range",
"label": "Max Trailing Silence Frames",
"description": "Maximum trailing silence frames to include",
"default_value": MAX_TRAILING_SILENCE_FRAMES,
"required": False,
"min_value": 1,
"max_value": 20,
"step": 1
},
{
"name": "vad_energy_threshold",
"type": "range",
"label": "VAD Energy Threshold",
"description": "Energy threshold for voice activity detection",
"default_value": 0.005,
"required": False,
"min_value": 0.001,
"max_value": 0.05,
"step": 0.001
},
{
"name": "vad_zcr_min",
"type": "range",
"label": "VAD ZCR Min",
"description": "Minimum zero-crossing rate for speech",
"default_value": 0.02,
"required": False,
"min_value": 0.01,
"max_value": 0.5,
"step": 0.01
},
{
"name": "vad_zcr_max",
"type": "range",
"label": "VAD ZCR Max",
"description": "Maximum zero-crossing rate for speech",
"default_value": 0.8,
"required": False,
"min_value": 0.1,
"max_value": 1.0,
"step": 0.05
},
{
"name": "vad_spectral_centroid_min",
"type": "range",
"label": "VAD Spectral Centroid Min",
"description": "Minimum spectral centroid for speech",
"default_value": 200,
"required": False,
"min_value": 50,
"max_value": 1000,
"step": 50
},
{
"name": "vad_spectral_centroid_max",
"type": "range",
"label": "VAD Spectral Centroid Max",
"description": "Maximum spectral centroid for speech",
"default_value": 4000,
"required": False,
"min_value": 1000,
"max_value": 8000,
"step": 500
},
{
"name": "vad_spectral_rolloff_threshold",
"type": "range",
"label": "VAD Spectral Rolloff Threshold",
"description": "Spectral rolloff threshold for speech detection",
"default_value": 3000,
"required": False,
"min_value": 1000,
"max_value": 10000,
"step": 500
},
{
"name": "vad_minimum_duration",
"type": "range",
"label": "VAD Minimum Duration",
"description": "Minimum duration for speech segments",
"default_value": 0.2,
"required": False,
"min_value": 0.1,
"max_value": 1.0,
"step": 0.1
},
{
"name": "vad_max_history",
"type": "range",
"label": "VAD Max History",
"description": "Maximum history frames for temporal consistency",
"default_value": 8,
"required": False,
"min_value": 4,
"max_value": 20,
"step": 1
},
{
"name": "vad_noise_floor_energy",
"type": "range",
"label": "VAD Noise Floor Energy",
"description": "Initial noise floor energy level",
"default_value": 0.001,
"required": False,
"min_value": 0.0001,
"max_value": 0.01,
"step": 0.0001
},
{
"name": "vad_adaptation_rate",
"type": "range",
"label": "VAD Adaptation Rate",
"description": "Rate of noise floor adaptation",
"default_value": 0.05,
"required": False,
"min_value": 0.01,
"max_value": 0.2,
"step": 0.01
},
{
"name": "vad_harmonic_threshold",
"type": "range",
"label": "VAD Harmonic Threshold",
"description": "Threshold for harmonic content detection",
"default_value": 0.15,
"required": False,
"min_value": 0.05,
"max_value": 0.5,
"step": 0.05
}
,
{
"name": "normalization_enabled",
"type": "boolean",
"label": "Enable Normalization",
"description": "Normalize incoming audio based on observed peak amplitude before transcription and visualization",
"default_value": True,
"required": False
},
{
"name": "normalization_target_peak",
"type": "number",
"label": "Normalization Target Peak",
"description": "Target peak (0-1) used when normalizing audio",
"default_value": 0.7,
"required": False,
"min_value": 0.5,
"max_value": 1.0
},
{
"name": "max_normalization_gain",
"type": "range",
"label": "Max Normalization Gain",
"description": "Maximum allowed gain applied during normalization",
"default_value": 10.0,
"required": False,
"min_value": 1.0,
"max_value": 10.0,
"step": 0.1
}
],
"categories": [
{"Model Settings": ["model_id", "device", "enable_quantization"]},
{"Performance Settings": ["throughput_streams", "max_threads"]},
{"Audio Settings": ["sample_rate", "chunk_duration_ms", "normalization_enabled", "normalization_target_peak", "max_normalization_gain"]},
{"Voice Activity Detection": ["vad_threshold", "max_silence_frames", "max_trailing_silence_frames", "vad_energy_threshold", "vad_zcr_min", "vad_zcr_max", "vad_spectral_centroid_min", "vad_spectral_centroid_max", "vad_spectral_rolloff_threshold", "vad_minimum_duration", "vad_max_history", "vad_noise_floor_energy", "vad_adaptation_rate", "vad_harmonic_threshold"]}
]
}
def handle_config_update(lobby_id: str, config_values: Dict[str, Any]) -> bool:
"""Handle configuration update for a specific lobby"""
global _model_id, _device, _ov_config
try:
logger.info(f"Updating Whisper config for lobby {lobby_id}: {config_values}")
config_applied = False
# Update model configuration (global - affects all instances)
if "model_id" in config_values:
new_model_id = config_values["model_id"]
if new_model_id in [model for models in model_ids.values() for model in models]:
_model_id = new_model_id
config_applied = True
logger.info(f"Updated model_id to: {_model_id}")
else:
logger.warning(f"Invalid model_id: {new_model_id}")
# Update device configuration (global - affects all instances)
if "device" in config_values:
new_device = config_values["device"] # type: ignore
available_devices = [d["name"] for d in get_available_devices()]
if new_device in available_devices or new_device in ["CPU", "GPU", "GPU.1"]:
_device = new_device
_ov_config.device = new_device
config_applied = True
logger.info(f"Updated device to: {_device}")
else:
logger.warning(f"Invalid device: {new_device}, available: {available_devices}")
# Update OpenVINO configuration (global - affects all instances)
if "enable_quantization" in config_values:
_ov_config.enable_quantization = bool(config_values["enable_quantization"])
config_applied = True
logger.info(f"Updated quantization to: {_ov_config.enable_quantization}")
if "throughput_streams" in config_values:
streams = int(config_values["throughput_streams"])
if 1 <= streams <= 8:
_ov_config.throughput_streams = streams
config_applied = True
logger.info(f"Updated throughput_streams to: {_ov_config.throughput_streams}")
if "max_threads" in config_values:
threads = int(config_values["max_threads"])
if 1 <= threads <= 16:
_ov_config.max_threads = threads
config_applied = True
logger.info(f"Updated max_threads to: {_ov_config.max_threads}")
# Update audio processing parameters for existing processors
if "sample_rate" in config_values:
rate = int(config_values["sample_rate"])
if 8000 <= rate <= 48000:
# Update existing processors
for pname, proc in list(_audio_processors.items()):
try:
proc.sample_rate = rate
proc.chunk_size = int(proc.sample_rate * proc.chunk_duration_ms / 1000)
logger.info(f"Updated sample_rate to {rate} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update sample_rate for processor: {pname}")
config_applied = True
logger.info(f"Updated sample_rate to: {rate}")
if "chunk_duration_ms" in config_values:
duration = int(config_values["chunk_duration_ms"])
if 50 <= duration <= 500:
# Update existing processors
for pname, proc in list(_audio_processors.items()):
try:
proc.chunk_duration_ms = duration
proc.chunk_size = int(proc.sample_rate * proc.chunk_duration_ms / 1000)
logger.info(f"Updated chunk_duration_ms to {duration} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update chunk_duration_ms for processor: {pname}")
config_applied = True
logger.info(f"Updated chunk_duration_ms to: {duration}")
if "max_silence_frames" in config_values:
frames = int(config_values["max_silence_frames"])
if 10 <= frames <= 100:
# Update existing processors
for pname, proc in list(_audio_processors.items()):
try:
proc.max_silence_frames = frames
logger.info(f"Updated max_silence_frames to {frames} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update max_silence_frames for processor: {pname}")
config_applied = True
logger.info(f"Updated max_silence_frames to: {frames}")
if "max_trailing_silence_frames" in config_values:
frames = int(config_values["max_trailing_silence_frames"])
if 1 <= frames <= 20:
# Update existing processors
for pname, proc in list(_audio_processors.items()):
try:
proc.max_trailing_silence_frames = frames
logger.info(f"Updated max_trailing_silence_frames to {frames} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update max_trailing_silence_frames for processor: {pname}")
config_applied = True
logger.info(f"Updated max_trailing_silence_frames to: {frames}")
# Update VAD configuration for existing processors
vad_updates = False
if "vad_energy_threshold" in config_values:
threshold = float(config_values["vad_energy_threshold"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_energy_threshold = threshold
logger.info(f"Updated vad_energy_threshold to {threshold} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_energy_threshold for processor: {pname}")
vad_updates = True
if "vad_zcr_min" in config_values:
zcr_min = float(config_values["vad_zcr_min"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_zcr_min = zcr_min
logger.info(f"Updated vad_zcr_min to {zcr_min} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_zcr_min for processor: {pname}")
vad_updates = True
if "vad_zcr_max" in config_values:
zcr_max = float(config_values["vad_zcr_max"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_zcr_max = zcr_max
logger.info(f"Updated vad_zcr_max to {zcr_max} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_zcr_max for processor: {pname}")
vad_updates = True
if "vad_spectral_centroid_min" in config_values:
centroid_min = int(config_values["vad_spectral_centroid_min"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_spectral_centroid_min = centroid_min
logger.info(f"Updated vad_spectral_centroid_min to {centroid_min} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_spectral_centroid_min for processor: {pname}")
vad_updates = True
if "vad_spectral_centroid_max" in config_values:
centroid_max = int(config_values["vad_spectral_centroid_max"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_spectral_centroid_max = centroid_max
logger.info(f"Updated vad_spectral_centroid_max to {centroid_max} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_spectral_centroid_max for processor: {pname}")
vad_updates = True
if "vad_spectral_rolloff_threshold" in config_values:
rolloff = int(config_values["vad_spectral_rolloff_threshold"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_spectral_rolloff_threshold = rolloff
logger.info(f"Updated vad_spectral_rolloff_threshold to {rolloff} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_spectral_rolloff_threshold for processor: {pname}")
vad_updates = True
if "vad_minimum_duration" in config_values:
duration = float(config_values["vad_minimum_duration"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_minimum_duration = duration
logger.info(f"Updated vad_minimum_duration to {duration} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_minimum_duration for processor: {pname}")
vad_updates = True
if "vad_max_history" in config_values:
history = int(config_values["vad_max_history"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_max_history = history
logger.info(f"Updated vad_max_history to {history} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_max_history for processor: {pname}")
vad_updates = True
if "vad_noise_floor_energy" in config_values:
noise_floor = float(config_values["vad_noise_floor_energy"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_noise_floor_energy = noise_floor
logger.info(f"Updated vad_noise_floor_energy to {noise_floor} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_noise_floor_energy for processor: {pname}")
vad_updates = True
if "vad_adaptation_rate" in config_values:
adaptation_rate = float(config_values["vad_adaptation_rate"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_adaptation_rate = adaptation_rate
logger.info(f"Updated vad_adaptation_rate to {adaptation_rate} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_adaptation_rate for processor: {pname}")
vad_updates = True
if "vad_harmonic_threshold" in config_values:
harmonic_threshold = float(config_values["vad_harmonic_threshold"])
for pname, proc in list(_audio_processors.items()):
try:
proc.vad_harmonic_threshold = harmonic_threshold
logger.info(f"Updated vad_harmonic_threshold to {harmonic_threshold} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update vad_harmonic_threshold for processor: {pname}")
vad_updates = True
if vad_updates:
config_applied = True
logger.info("VAD configuration updated for existing processors")
# Normalization updates: apply to existing processors
norm_updates = False
if "normalization_enabled" in config_values:
enabled = bool(config_values["normalization_enabled"])
for pname, proc in list(_audio_processors.items()):
try:
proc.normalization_enabled = enabled
logger.info(f"Updated normalization_enabled to {enabled} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update normalization_enabled for processor: {pname}")
norm_updates = True
if "normalization_target_peak" in config_values:
target_peak = float(config_values["normalization_target_peak"])
for pname, proc in list(_audio_processors.items()):
try:
proc.normalization_target_peak = target_peak
logger.info(f"Updated normalization_target_peak to {target_peak} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update normalization_target_peak for processor: {pname}")
norm_updates = True
if "max_normalization_gain" in config_values:
max_gain = float(config_values["max_normalization_gain"])
for pname, proc in list(_audio_processors.items()):
try:
proc.max_normalization_gain = max_gain
logger.info(f"Updated max_normalization_gain to {max_gain} for processor: {pname}")
except Exception:
logger.debug(f"Failed to update max_normalization_gain for processor: {pname}")
norm_updates = True
if norm_updates:
config_applied = True
logger.info("Normalization configuration updated for existing processors")
if config_applied:
logger.info(f"Configuration update completed for lobby {lobby_id}")
else:
logger.warning(f"No valid configuration changes applied for lobby {lobby_id}")
return config_applied
except Exception as e:
logger.error(f"Failed to apply Whisper config update: {e}")
return False
def create_agent_tracks(session_name: str) -> Dict[str, MediaStreamTrack]:
"""Create agent tracks. Provides a synthetic video waveform track and a silent audio track for compatibility."""
class SilentAudioTrack(MediaStreamTrack):
kind = "audio"
def __init__(
self, sample_rate: int = SAMPLE_RATE, channels: int = 1, fps: int = 50
):
super().__init__()
self.sample_rate = sample_rate
self.channels = channels
self.fps = fps
self.samples_per_frame = int(self.sample_rate / self.fps)
self._timestamp = 0
async def recv(self) -> AudioFrame:
# Generate silent audio as int16 (required by aiortc)
data = np.zeros((self.channels, self.samples_per_frame), dtype=np.int16)
frame = AudioFrame.from_ndarray(
data, layout="mono" if self.channels == 1 else "stereo"
)
frame.sample_rate = self.sample_rate
frame.pts = self._timestamp
frame.time_base = fractions.Fraction(1, self.sample_rate)
self._timestamp += self.samples_per_frame
await asyncio.sleep(1 / self.fps)
return frame
try:
video_track = WaveformVideoTrack(
session_name=session_name, width=640, height=480, fps=15
)
audio_track = SilentAudioTrack()
return {"video": video_track, "audio": audio_track}
except Exception as e:
logger.error(f"Failed to create agent tracks: {e}")
return {}
async def handle_chat_message(
chat_message: ChatMessageModel, send_message_func: Callable[[Union[str, ChatMessageModel]], Awaitable[None]]
) -> Optional[str]:
"""Handle incoming chat messages."""
return None
async def on_track_received(peer: Peer, track: MediaStreamTrack) -> None:
"""Callback when a new track is received from a peer."""
await handle_track_received(peer, track)
def get_track_handler() -> Callable[[Peer, MediaStreamTrack], Awaitable[None]]:
"""Return the track handler function."""
return on_track_received
def bind_send_chat_function(send_chat_func: Callable[[ChatMessageModel], Awaitable[None]], create_chat_message_func: Callable[[str, Optional[str]], ChatMessageModel]) -> None:
"""Bind the send chat function."""
global _send_chat_func, _create_chat_message_func, _audio_processors
logger.info("Binding send chat function to OpenVINO whisper agent")
_send_chat_func = send_chat_func
_create_chat_message_func = create_chat_message_func
# Update existing processors
for peer_name, processor in _audio_processors.items():
processor.send_chat_func = send_chat_func
processor.create_chat_message_func = create_chat_message_func
logger.debug(f"Updated processor for {peer_name} with new send chat function")
def cleanup_peer_processor(peer_name: str) -> None:
"""Clean up processor for disconnected peer."""
global _audio_processors
if peer_name in _audio_processors:
logger.info(f"Cleaning up processor for {peer_name}")
processor = _audio_processors[peer_name]
processor.shutdown()
del _audio_processors[peer_name]
logger.info(f"Processor cleanup complete for {peer_name}")
if peer_name in WaveformVideoTrack.buffer:
del WaveformVideoTrack.buffer[peer_name]
def get_active_processors() -> Dict[str, OptimizedAudioProcessor]:
"""Get active processors for debugging."""
return _audio_processors.copy()
def get_model_info() -> Dict[str, Any]:
"""Get information about the loaded model."""
ov_model = _ensure_model_loaded()
return {
"model_id": _model_id,
"device": _ov_config.device,
"quantization_enabled": _ov_config.enable_quantization,
"is_quantized": ov_model.is_quantized,
"sample_rate": SAMPLE_RATE,
"chunk_duration_ms": CHUNK_DURATION_MS,
"loading_status": _model_loading_status,
"loading_progress": _model_loading_progress,
}