RAG working in candidate page

This commit is contained in:
James Ketr 2025-06-02 13:03:04 -07:00
parent bb84709f44
commit 149bbdf73b
14 changed files with 1656 additions and 270 deletions

View File

@ -21,6 +21,15 @@ import { connectionBase } from '../utils/Global';
import './VectorVisualizer.css';
import { BackstoryPageProps } from './BackstoryTab';
import { useAuth } from 'hooks/AuthContext';
import * as Types from 'types/types';
import { useSelectedCandidate } from 'hooks/GlobalContext';
import { useNavigate } from 'react-router-dom';
import { Message } from './Message';
const defaultMessage: Types.ChatMessageBase = {
type: "preparing", status: "done", sender: "system", sessionId: "", timestamp: new Date(), content: ""
};
interface VectorVisualizerProps extends BackstoryPageProps {
inline?: boolean;
@ -29,23 +38,11 @@ interface VectorVisualizerProps extends BackstoryPageProps {
interface Metadata {
id: string;
doc_type: string;
docType: string;
content: string;
distance?: number;
}
type QuerySet = {
ids: string[],
documents: string[],
metadatas: Metadata[],
embeddings: (number[])[],
distances?: (number | undefined)[],
dimensions?: number;
query?: string;
umap_embedding_2d?: number[];
umap_embedding_3d?: number[];
};
const emptyQuerySet = {
ids: [],
documents: [],
@ -173,25 +170,27 @@ const DEFAULT_UNFOCUS_SIZE = 2.;
type Node = {
id: string,
content: string, // Portion of content that was used for embedding
full_content: string | undefined, // Portion of content plus/minus buffer
fullContent: string | undefined, // Portion of content plus/minus buffer
emoji: string,
doc_type: string,
docType: string,
source_file: string,
distance: number | undefined,
path: string,
chunk_begin: number,
line_begin: number,
chunk_end: number,
line_end: number,
chunkBegin: number,
lineBegin: number,
chunkEnd: number,
lineEnd: number,
sx: SxProps,
};
const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualizerProps) => {
const { setSnack, rag, inline, sx } = props;
const { user, apiClient } = useAuth();
const { setSnack, submitQuery, rag, inline, sx } = props;
const backstoryProps = { setSnack, submitQuery };
const [plotData, setPlotData] = useState<PlotData | null>(null);
const [newQuery, setNewQuery] = useState<string>('');
const [querySet, setQuerySet] = useState<QuerySet>(rag || emptyQuerySet);
const [result, setResult] = useState<QuerySet | undefined>(undefined);
const [querySet, setQuerySet] = useState<Types.ChromaDBGetResponse>(rag || emptyQuerySet);
const [result, setResult] = useState<Types.ChromaDBGetResponse | null>(null);
const [view2D, setView2D] = useState<boolean>(true);
const plotlyRef = useRef(null);
const boxRef = useRef<HTMLElement>(null);
@ -199,6 +198,9 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
const theme = useTheme();
const isMobile = useMediaQuery(theme.breakpoints.down('md'));
const [plotDimensions, setPlotDimensions] = useState({ width: 0, height: 0 });
const navigate = useNavigate();
const candidate: Types.Candidate | null = user?.userType === 'candidate' ? user : null;
/* Force resize of Plotly as it tends to not be the correct size if it is initially rendered
* off screen (eg., the VectorVisualizer is not on the tab the app loads to) */
@ -225,21 +227,16 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
// Get the collection to visualize
useEffect(() => {
if ((result !== undefined && result.dimensions !== (view2D ? 3 : 2))) {
if (result) {
return;
}
const fetchCollection = async () => {
if (!candidate) {
return;
}
try {
const response = await fetch(connectionBase + `/api/umap/`, {
method: 'PUT',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ dimensions: view2D ? 2 : 3 }),
});
const data: QuerySet = await response.json();
data.dimensions = view2D ? 2 : 3;
setResult(data);
const result = await apiClient.getCandidateVectors(view2D ? 2 : 3);
setResult(result);
} catch (error) {
console.error('Error obtaining collection information:', error);
setSnack("Unable to obtain collection information.", "error");
@ -253,7 +250,8 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
if (!result || !result.embeddings) return;
if (result.embeddings.length === 0) return;
const full: QuerySet = {
const full: Types.ChromaDBGetResponse = {
...result,
ids: [...result.ids || []],
documents: [...result.documents || []],
embeddings: [...result.embeddings],
@ -270,18 +268,27 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
return;
}
let query: QuerySet = {
let query: Types.ChromaDBGetResponse = {
ids: [],
documents: [],
embeddings: [],
metadatas: [],
distances: [],
query: '',
size: 0,
dimensions: 2,
name: ''
};
let filtered: QuerySet = {
let filtered: Types.ChromaDBGetResponse = {
ids: [],
documents: [],
embeddings: [],
metadatas: [],
distances: [],
query: '',
size: 0,
dimensions: 2,
name: ''
};
/* Loop through all items and divide into two groups:
@ -310,30 +317,30 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
}
});
if (view2D && querySet.umap_embedding_2d && querySet.umap_embedding_2d.length) {
if (view2D && querySet.umapEmbedding2D && querySet.umapEmbedding2D.length) {
query.ids.unshift('query');
query.metadatas.unshift({ id: 'query', doc_type: 'query', content: querySet.query || '', distance: 0 });
query.embeddings.unshift(querySet.umap_embedding_2d);
query.metadatas.unshift({ id: 'query', docType: 'query', content: querySet.query || '', distance: 0 });
query.embeddings.unshift(querySet.umapEmbedding2D);
}
if (!view2D && querySet.umap_embedding_3d && querySet.umap_embedding_3d.length) {
if (!view2D && querySet.umapEmbedding3D && querySet.umapEmbedding3D.length) {
query.ids.unshift('query');
query.metadatas.unshift({ id: 'query', doc_type: 'query', content: querySet.query || '', distance: 0 });
query.embeddings.unshift(querySet.umap_embedding_3d);
query.metadatas.unshift({ id: 'query', docType: 'query', content: querySet.query || '', distance: 0 });
query.embeddings.unshift(querySet.umapEmbedding3D);
}
const filtered_doc_types = filtered.metadatas.map(m => m.doc_type || 'unknown')
const query_doc_types = query.metadatas.map(m => m.doc_type || 'unknown')
const filtered_docTypes = filtered.metadatas.map(m => m.docType || 'unknown')
const query_docTypes = query.metadatas.map(m => m.docType || 'unknown')
const has_query = query.metadatas.length > 0;
const filtered_sizes = filtered.metadatas.map(m => has_query ? DEFAULT_UNFOCUS_SIZE : DEFAULT_SIZE);
const filtered_colors = filtered_doc_types.map(type => colorMap[type] || '#ff8080');
const filtered_colors = filtered_docTypes.map(type => colorMap[type] || '#4d4d4d');
const filtered_x = normalizeDimension(filtered.embeddings.map((v: number[]) => v[0]));
const filtered_y = normalizeDimension(filtered.embeddings.map((v: number[]) => v[1]));
const filtered_z = is3D ? normalizeDimension(filtered.embeddings.map((v: number[]) => v[2])) : undefined;
const query_sizes = query.metadatas.map(m => DEFAULT_SIZE + 2. * DEFAULT_SIZE * Math.pow((1. - (m.distance || 1.)), 3));
const query_colors = query_doc_types.map(type => colorMap[type] || '#ff8080');
const query_colors = query_docTypes.map(type => colorMap[type] || '#4d4d4d');
const query_x = normalizeDimension(query.embeddings.map((v: number[]) => v[0]));
const query_y = normalizeDimension(query.embeddings.map((v: number[]) => v[1]));
const query_z = is3D ? normalizeDimension(query.embeddings.map((v: number[]) => v[2])) : undefined;
@ -388,22 +395,14 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
const sendQuery = async (query: string) => {
if (!query.trim()) return;
setNewQuery('');
try {
const response = await fetch(`${connectionBase}/api/similarity/`, {
method: 'PUT',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
dimensions: view2D ? 2 : 3,
})
});
const data = await response.json();
setQuerySet(data);
const result = await apiClient.getCandidateSimilarContent(query);
console.log(result);
setQuerySet(result);
} catch (error) {
console.error('Error obtaining query similarity information:', error);
setSnack("Unable to obtain query similarity information.", "error");
const msg = `Error obtaining similar content to ${query}.`
setSnack(msg, "error");
};
};
@ -413,18 +412,18 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
</Box>
);
if (!candidate) return (
<Box sx={{ display: 'flex', flexGrow: 1, justifyContent: 'center', alignItems: 'center' }}>
<div>No candidate selected. Please <Button onClick={() => navigate('/find-a-candidate')}>select a candidate</Button> first.</div>
</Box>
);
const fetchRAGMeta = async (node: Node) => {
try {
const response = await fetch(connectionBase + `/api/umap/entry/${node.id}`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
const result = await apiClient.getCandidateContent(node.id);
const update: Node = {
...node,
full_content: await response.json()
fullContent: result.content
}
setNode(update);
} catch (error) {
@ -436,14 +435,15 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
const onNodeSelected = (metadata: any) => {
let node: Node;
if (metadata.doc_type === 'query') {
console.log(metadata);
if (metadata.docType === 'query') {
node = {
...metadata,
content: `Similarity results for the query **${querySet.query || ''}**
The scatter graph shows the query in N-dimensional space, mapped to ${view2D ? '2' : '3'}-dimensional space. Larger dots represent relative similarity in N-dimensional space.
`,
emoji: emojiMap[metadata.doc_type],
emoji: emojiMap[metadata.docType],
sx: {
m: 0.5,
p: 2,
@ -453,7 +453,7 @@ The scatter graph shows the query in N-dimensional space, mapped to ${view2D ? '
justifyContent: "center",
flexGrow: 0,
flexWrap: "wrap",
backgroundColor: colorMap[metadata.doc_type] || '#ff8080',
backgroundColor: colorMap[metadata.docType] || '#ff8080',
}
}
setNode(node);
@ -463,7 +463,7 @@ The scatter graph shows the query in N-dimensional space, mapped to ${view2D ? '
node = {
content: `Loading...`,
...metadata,
emoji: emojiMap[metadata.doc_type] || '❓',
emoji: emojiMap[metadata.docType] || '❓',
}
setNode(node);
@ -499,7 +499,7 @@ The scatter graph shows the query in N-dimensional space, mapped to ${view2D ? '
flexBasis: 0,
flexGrow: 0
}}
control={<Switch checked={!view2D} />} onChange={() => setView2D(!view2D)} label="3D" />
control={<Switch checked={!view2D} />} onChange={() => { setView2D(!view2D); setResult(null); }} label="3D" />
<Plot
ref={plotlyRef}
onClick={(event: any) => { onNodeSelected(event.points[0].customdata); }}
@ -528,7 +528,7 @@ The scatter graph shows the query in N-dimensional space, mapped to ${view2D ? '
<TableBody sx={{ '& td': { verticalAlign: "top", fontSize: "0.75rem", }, '& td:first-of-type': { whiteSpace: "nowrap", width: "1rem" } }}>
<TableRow>
<TableCell>Type</TableCell>
<TableCell>{node.emoji} {node.doc_type}</TableCell>
<TableCell>{node.emoji} {node.docType}</TableCell>
</TableRow>
{node.source_file !== undefined && <TableRow>
<TableCell>File</TableCell>
@ -560,7 +560,7 @@ The scatter graph shows the query in N-dimensional space, mapped to ${view2D ? '
Click a point in the scatter-graph to see information about that node.
</Paper>
}
{node !== null && node.full_content &&
{node !== null && node.fullContent &&
<Scrollable
autoscroll={false}
sx={{
@ -575,16 +575,16 @@ The scatter graph shows the query in N-dimensional space, mapped to ${view2D ? '
}}
>
{
node.full_content.split('\n').map((line, index) => {
index += 1 + node.chunk_begin;
const bgColor = (index > node.line_begin && index <= node.line_end) ? '#f0f0f0' : 'auto';
node.fullContent.split('\n').map((line, index) => {
index += 1 + node.chunkBegin;
const bgColor = (index > node.lineBegin && index <= node.lineEnd) ? '#f0f0f0' : 'auto';
return <Box key={index} sx={{ display: "flex", flexDirection: "row", borderBottom: '1px solid #d0d0d0', ':first-of-type': { borderTop: '1px solid #d0d0d0' }, backgroundColor: bgColor }}>
<Box sx={{ fontFamily: 'courier', fontSize: "0.8rem", minWidth: "2rem", pt: "0.1rem", align: "left", verticalAlign: "top" }}>{index}</Box>
<pre style={{ margin: 0, padding: 0, border: "none", minHeight: "1rem", overflow: "hidden" }} >{line || " "}</pre>
</Box>;
})
}
{!node.line_begin && <pre style={{ margin: 0, padding: 0, border: "none" }}>{node.content}</pre>}
{!node.lineBegin && <pre style={{ margin: 0, padding: 0, border: "none" }}>{node.content}</pre>}
</Scrollable>
}
</Box>

View File

@ -20,8 +20,8 @@ import { ControlsPage } from 'pages/ControlsPage';
import { LoginPage } from "pages/LoginPage";
import { CandidateDashboardPage } from "pages/CandidateDashboardPage"
import { EmailVerificationPage } from "components/EmailVerificationComponents";
import { CandidateProfilePage } from "pages/candidate/Profile";
const ProfilePage = () => (<BetaPage><Typography variant="h4">Profile</Typography></BetaPage>);
const BackstoryPage = () => (<BetaPage><Typography variant="h4">Backstory</Typography></BetaPage>);
const ResumesPage = () => (<BetaPage><Typography variant="h4">Resumes</Typography></BetaPage>);
const QASetupPage = () => (<BetaPage><Typography variant="h4">Q&A Setup</Typography></BetaPage>);
@ -69,7 +69,7 @@ const getBackstoryDynamicRoutes = (props: BackstoryDynamicRoutesProps): ReactNod
if (user.userType === 'candidate') {
routes.splice(-1, 0, ...[
<Route key={`${index++}`} path="/candidate/dashboard" element={<BetaPage><CandidateDashboardPage {...backstoryProps} /></BetaPage>} />,
<Route key={`${index++}`} path="/candidate/profile" element={<ProfilePage />} />,
<Route key={`${index++}`} path="/candidate/profile" element={<CandidateProfilePage {...backstoryProps} />} />,
<Route key={`${index++}`} path="/candidate/backstory" element={<BackstoryPage />} />,
<Route key={`${index++}`} path="/candidate/resumes" element={<ResumesPage />} />,
<Route key={`${index++}`} path="/candidate/qa-setup" element={<QASetupPage />} />,

View File

@ -23,13 +23,6 @@ interface LoginRequest {
password: string;
}
interface MFAVerificationRequest {
email: string;
code: string;
deviceId: string;
rememberDevice?: boolean;
}
interface EmailVerificationRequest {
token: string;
}
@ -418,7 +411,7 @@ function useAuthenticationLogic() {
}, [apiClient]);
// MFA verification
const verifyMFA = useCallback(async (mfaData: MFAVerificationRequest): Promise<boolean> => {
const verifyMFA = useCallback(async (mfaData: Types.MFAVerifyRequest): Promise<boolean> => {
setAuthState(prev => ({ ...prev, isLoading: true, error: null }));
try {
@ -742,7 +735,7 @@ function ProtectedRoute({
}
export type {
AuthState, LoginRequest, MFAVerificationRequest, EmailVerificationRequest, ResendVerificationRequest, PasswordResetRequest
AuthState, LoginRequest, EmailVerificationRequest, ResendVerificationRequest, PasswordResetRequest
}
export type { CreateCandidateRequest, CreateEmployerRequest } from '../services/api-client';

View File

@ -43,7 +43,10 @@ const emptyUser: Candidate = {
education: [],
preferredJobTypes: [],
languages: [],
certifications: []
certifications: [],
isAdmin: false,
hasProfile: false,
ragContentSize: 0
};
const GenerateCandidate = (props: BackstoryElementProps) => {

View File

@ -28,8 +28,10 @@ import { BackstoryPageProps } from 'components/BackstoryTab';
import { LoginForm } from "components/EmailVerificationComponents";
import { CandidateRegistrationForm } from "components/RegistrationForms";
import { useNavigate } from 'react-router-dom';
const LoginPage: React.FC<BackstoryPageProps> = (props: BackstoryPageProps) => {
const navigate = useNavigate();
const { setSnack } = props;
const [tabValue, setTabValue] = useState(0);
const [loading, setLoading] = useState(false);
@ -62,68 +64,10 @@ const LoginPage: React.FC<BackstoryPageProps> = (props: BackstoryPageProps) => {
setSuccess(null);
};
// If user is logged in, show their profile
// If user is logged in, navigate to the profile page
if (user) {
return (
<Container maxWidth="md" sx={{ mt: 4 }}>
<Card elevation={3}>
<CardContent>
<Box sx={{ display: 'flex', alignItems: 'center', mb: 3 }}>
<Avatar sx={{ mr: 2, bgcolor: 'primary.main' }}>
<AccountCircle />
</Avatar>
<Typography variant="h4" component="h1">
User Profile
</Typography>
</Box>
<Divider sx={{ mb: 3 }} />
<Grid container spacing={3}>
<Grid size={{ xs: 12, md: 6 }}>
<Typography variant="body1" sx={{ mb: 1 }}>
<strong>Username:</strong> {name}
</Typography>
</Grid>
<Grid size={{ xs: 12, md: 6 }}>
<Typography variant="body1" sx={{ mb: 1 }}>
<strong>Email:</strong> {user.email}
</Typography>
</Grid>
<Grid size={{ xs: 12, md: 6 }}>
<Typography variant="body1" sx={{ mb: 1 }}>
{/* <strong>Status:</strong> {user.status} */}
</Typography>
</Grid>
<Grid size={{ xs: 12, md: 6 }}>
<Typography variant="body1" sx={{ mb: 1 }}>
<strong>Phone:</strong> {user.phone || 'Not provided'}
</Typography>
</Grid>
<Grid size={{ xs: 12, md: 6 }}>
<Typography variant="body1" sx={{ mb: 1 }}>
<strong>Account type:</strong> {user.userType}
</Typography>
</Grid>
<Grid size={{ xs: 12, md: 6 }}>
<Typography variant="body1" sx={{ mb: 1 }}>
<strong>Last Login:</strong> {
user.lastLogin
? user.lastLogin.toLocaleString()
: 'N/A'
}
</Typography>
</Grid>
<Grid size={{ xs: 12, md: 6 }}>
<Typography variant="body1" sx={{ mb: 1 }}>
<strong>Member Since:</strong> {user.createdAt.toLocaleDateString()}
</Typography>
</Grid>
</Grid>
</CardContent>
</Card>
</Container>
);
navigate('/candidate/profile');
return (<></>);
}
return (

File diff suppressed because it is too large Load Diff

View File

@ -33,6 +33,7 @@ import {
convertFromApi,
convertArrayFromApi
} from 'types/types';
import internal from 'stream';
// ============================
// Streaming Types and Interfaces
@ -290,14 +291,7 @@ class ApiClient {
body: JSON.stringify(formatApiRequest(auth))
});
// This could return either a full auth response or MFA request
const data = await response.json();
if (!response.ok) {
throw new Error(data.error?.message || 'Login failed');
}
return data.data;
return handleApiResponse<Types.AuthResponse | Types.MFARequestResponse>(response);
}
/**
@ -524,10 +518,11 @@ class ApiClient {
}
async updateCandidate(id: string, updates: Partial<Types.Candidate>): Promise<Types.Candidate> {
const request = formatApiRequest(updates);
const response = await fetch(`${this.baseUrl}/candidates/${id}`, {
method: 'PATCH',
headers: this.defaultHeaders,
body: JSON.stringify(formatApiRequest(updates))
body: JSON.stringify(request)
});
return this.handleApiResponseWithConversion<Types.Candidate>(response, 'Candidate');
@ -739,6 +734,47 @@ class ApiClient {
return result;
}
async getCandidateSimilarContent(query: string
): Promise<Types.ChromaDBGetResponse> {
const response = await fetch(`${this.baseUrl}/candidates/rag-search`, {
method: 'POST',
headers: this.defaultHeaders,
body: JSON.stringify(query)
});
const result = await handleApiResponse<Types.ChromaDBGetResponse>(response);
return result;
}
async getCandidateVectors(
dimensions: number,
): Promise<Types.ChromaDBGetResponse> {
const response = await fetch(`${this.baseUrl}/candidates/rag-vectors`, {
method: 'POST',
headers: this.defaultHeaders,
body: JSON.stringify(dimensions)
});
const result = await handleApiResponse<Types.ChromaDBGetResponse>(response);
return result;
}
async getCandidateContent(
doc_id: string,
): Promise<Types.RagContentResponse> {
const response = await fetch(`${this.baseUrl}/candidates/rag-content`, {
method: 'POST',
headers: this.defaultHeaders,
body: JSON.stringify(doc_id)
});
const result = await handleApiResponse<Types.RagContentResponse>(response);
return result;
}
/**
* Create a chat session about a specific candidate
*/
@ -809,7 +845,7 @@ class ApiClient {
* Send message with streaming response support and date conversion
*/
sendMessageStream(
chatMessage: Types.ChatMessageUser,
chatMessage: Types.ChatMessageBase,
options: StreamingOptions = {}
): StreamingResponse {
const abortController = new AbortController();

View File

@ -1,6 +1,6 @@
// Generated TypeScript types from Pydantic models
// Source: src/backend/models.py
// Generated on: 2025-06-01T20:40:46.797024
// Generated on: 2025-06-02T18:30:16.709256
// DO NOT EDIT MANUALLY - This file is auto-generated
// ============================
@ -13,9 +13,9 @@ export type ActivityType = "login" | "search" | "view_job" | "apply_job" | "mess
export type ApplicationStatus = "applied" | "reviewing" | "interview" | "offer" | "rejected" | "accepted" | "withdrawn";
export type ChatContextType = "job_search" | "candidate_chat" | "interview_prep" | "resume_review" | "general" | "generate_persona" | "generate_profile";
export type ChatContextType = "job_search" | "candidate_chat" | "interview_prep" | "resume_review" | "general" | "generate_persona" | "generate_profile" | "rag_search";
export type ChatMessageType = "error" | "generating" | "info" | "preparing" | "processing" | "response" | "searching" | "system" | "thinking" | "tooling" | "user";
export type ChatMessageType = "error" | "generating" | "info" | "preparing" | "processing" | "response" | "searching" | "rag_result" | "system" | "thinking" | "tooling" | "user";
export type ChatSenderType = "user" | "assistant" | "system";
@ -145,7 +145,7 @@ export interface BaseUser {
lastLogin?: Date;
profileImage?: string;
status: "active" | "inactive" | "pending" | "banned";
isAdmin?: boolean;
isAdmin: boolean;
}
export interface BaseUserWithType {
@ -161,7 +161,7 @@ export interface BaseUserWithType {
lastLogin?: Date;
profileImage?: string;
status: "active" | "inactive" | "pending" | "banned";
isAdmin?: boolean;
isAdmin: boolean;
userType: "candidate" | "employer" | "guest";
}
@ -178,7 +178,7 @@ export interface Candidate {
lastLogin?: Date;
profileImage?: string;
status: "active" | "inactive" | "pending" | "banned";
isAdmin?: boolean;
isAdmin: boolean;
userType: "candidate";
username: string;
description?: string;
@ -194,9 +194,9 @@ export interface Candidate {
languages?: Array<Language>;
certifications?: Array<Certification>;
jobApplications?: Array<JobApplication>;
hasProfile?: boolean;
hasProfile: boolean;
rags?: Array<RagEntry>;
ragContentSize?: number;
ragContentSize: number;
age?: number;
gender?: "female" | "male";
ethnicity?: string;
@ -237,7 +237,7 @@ export interface Certification {
}
export interface ChatContext {
type: "job_search" | "candidate_chat" | "interview_prep" | "resume_review" | "general" | "generate_persona" | "generate_profile";
type: "job_search" | "candidate_chat" | "interview_prep" | "resume_review" | "general" | "generate_persona" | "generate_profile" | "rag_search";
relatedEntityId?: string;
relatedEntityType?: "job" | "candidate" | "employer";
additionalContext?: Record<string, any>;
@ -248,11 +248,11 @@ export interface ChatMessage {
sessionId: string;
senderId?: string;
status: "initializing" | "streaming" | "done" | "error";
type: "error" | "generating" | "info" | "preparing" | "processing" | "response" | "searching" | "system" | "thinking" | "tooling" | "user";
type: "error" | "generating" | "info" | "preparing" | "processing" | "response" | "searching" | "rag_result" | "system" | "thinking" | "tooling" | "user";
sender: "user" | "assistant" | "system";
timestamp: Date;
tunables?: Tunables;
content?: string;
content: string;
metadata?: ChatMessageMetaData;
}
@ -261,32 +261,45 @@ export interface ChatMessageBase {
sessionId: string;
senderId?: string;
status: "initializing" | "streaming" | "done" | "error";
type: "error" | "generating" | "info" | "preparing" | "processing" | "response" | "searching" | "system" | "thinking" | "tooling" | "user";
type: "error" | "generating" | "info" | "preparing" | "processing" | "response" | "searching" | "rag_result" | "system" | "thinking" | "tooling" | "user";
sender: "user" | "assistant" | "system";
timestamp: Date;
tunables?: Tunables;
content?: string;
content: string;
}
export interface ChatMessageMetaData {
model: "qwen2.5";
temperature?: number;
maxTokens?: number;
topP?: number;
temperature: number;
maxTokens: number;
topP: number;
frequencyPenalty?: number;
presencePenalty?: number;
stopSequences?: Array<string>;
ragResults?: Array<ChromaDBGetResponse>;
llmHistory?: Array<LLMMessage>;
evalCount?: number;
evalDuration?: number;
promptEvalCount?: number;
promptEvalDuration?: number;
evalCount: number;
evalDuration: number;
promptEvalCount: number;
promptEvalDuration: number;
options?: ChatOptions;
tools?: Record<string, any>;
timers?: Record<string, number>;
}
export interface ChatMessageRagSearch {
id?: string;
sessionId: string;
senderId?: string;
status: "done";
type: "rag_result";
sender: "user";
timestamp: Date;
tunables?: Tunables;
content: string;
dimensions: number;
}
export interface ChatMessageUser {
id?: string;
sessionId: string;
@ -296,7 +309,7 @@ export interface ChatMessageUser {
sender: "user";
timestamp: Date;
tunables?: Tunables;
content?: string;
content: string;
}
export interface ChatOptions {
@ -320,23 +333,46 @@ export interface ChatSession {
title?: string;
context: ChatContext;
messages?: Array<ChatMessage>;
isArchived?: boolean;
isArchived: boolean;
systemPrompt?: string;
}
export interface ChromaDBGetResponse {
ids?: Array<string>;
embeddings?: Array<Array<number>>;
documents?: Array<string>;
metadatas?: Array<Record<string, any>>;
name?: string;
size?: number;
query?: string;
ids: Array<string>;
embeddings: Array<Array<number>>;
documents: Array<string>;
metadatas: Array<Record<string, any>>;
distances: Array<number>;
name: string;
size: number;
dimensions: number;
query: string;
queryEmbedding?: Array<number>;
umapEmbedding2D?: Array<number>;
umapEmbedding3D?: Array<number>;
}
export interface CreateCandidateRequest {
email: string;
username: string;
password: string;
firstName: string;
lastName: string;
phone?: string;
}
export interface CreateEmployerRequest {
email: string;
username: string;
password: string;
companyName: string;
industry: string;
companySize: string;
companyDescription: string;
websiteUrl?: string;
phone?: string;
}
export interface CustomQuestion {
question: string;
answer: string;
@ -398,7 +434,7 @@ export interface Employer {
lastLogin?: Date;
profileImage?: string;
status: "active" | "inactive" | "pending" | "banned";
isAdmin?: boolean;
isAdmin: boolean;
userType: "employer";
companyName: string;
industry: string;
@ -486,8 +522,8 @@ export interface Job {
benefits?: Array<string>;
visaSponsorship?: boolean;
featuredUntil?: Date;
views?: number;
applicationCount?: number;
views: number;
applicationCount: number;
}
export interface JobApplication {
@ -521,8 +557,8 @@ export interface JobResponse {
}
export interface LLMMessage {
role?: string;
content?: string;
role: string;
content: string;
toolCalls?: Array<Record<string, any>>;
}
@ -572,7 +608,7 @@ export interface MFAVerifyRequest {
email: string;
code: string;
deviceId: string;
rememberDevice?: boolean;
rememberDevice: boolean;
}
export interface MessageReaction {
@ -588,8 +624,8 @@ export interface NotificationPreference {
}
export interface PaginatedRequest {
page?: number;
limit?: number;
page: number;
limit: number;
sortBy?: string;
sortOrder?: "asc" | "desc";
filters?: Record<string, any>;
@ -634,10 +670,26 @@ export interface RAGConfiguration {
isActive: boolean;
}
export interface RagContentMetadata {
sourceFile: string;
lineBegin: number;
lineEnd: number;
lines: number;
chunkBegin?: number;
chunkEnd?: number;
metadata?: Record<string, any>;
}
export interface RagContentResponse {
id: string;
content: string;
metadata: RagContentMetadata;
}
export interface RagEntry {
name: string;
description?: string;
enabled?: boolean;
description: string;
enabled: boolean;
}
export interface RefreshToken {
@ -674,8 +726,8 @@ export interface SalaryRange {
export interface SearchQuery {
query: string;
filters?: Record<string, any>;
page?: number;
limit?: number;
page: number;
limit: number;
sortBy?: string;
sortOrder?: "asc" | "desc";
}
@ -700,9 +752,9 @@ export interface SocialLink {
}
export interface Tunables {
enableRAG?: boolean;
enableTools?: boolean;
enableContext?: boolean;
enableRAG: boolean;
enableTools: boolean;
enableContext: boolean;
}
export interface UserActivity {
@ -898,6 +950,19 @@ export function convertChatMessageBaseFromApi(data: any): ChatMessageBase {
timestamp: new Date(data.timestamp),
};
}
/**
* Convert ChatMessageRagSearch from API response, parsing date fields
* Date fields: timestamp
*/
export function convertChatMessageRagSearchFromApi(data: any): ChatMessageRagSearch {
if (!data) return data;
return {
...data,
// Convert timestamp from ISO string to Date
timestamp: new Date(data.timestamp),
};
}
/**
* Convert ChatMessageUser from API response, parsing date fields
* Date fields: timestamp
@ -1159,6 +1224,8 @@ export function convertFromApi<T>(data: any, modelType: string): T {
return convertChatMessageFromApi(data) as T;
case 'ChatMessageBase':
return convertChatMessageBaseFromApi(data) as T;
case 'ChatMessageRagSearch':
return convertChatMessageRagSearchFromApi(data) as T;
case 'ChatMessageUser':
return convertChatMessageUserFromApi(data) as T;
case 'ChatSession':

View File

@ -60,7 +60,7 @@ class Agent(BaseModel, ABC):
return self
# Agent properties
system_prompt: str # Mandatory
system_prompt: str = ""
context_tokens: int = 0
# context_size is shared across all subclasses

View File

@ -0,0 +1,98 @@
from __future__ import annotations
from typing import Literal, AsyncGenerator, ClassVar, Optional, Any, List
from datetime import datetime, UTC
import inspect
from .base import Agent, agent_registry
from logger import logger
from .registry import agent_registry
from models import ( ChatMessage, ChatStatusType, ChatMessage, ChatOptions, ChatMessageType, ChatSenderType, ChatStatusType, ChatMessageMetaData, Candidate )
from rag import ( ChromaDBGetResponse )
class Chat(Agent):
"""
Chat Agent
"""
agent_type: Literal["rag_search"] = "rag_search" # type: ignore
_agent_type: ClassVar[str] = agent_type # Add this for registration
async def generate(
self, llm: Any, model: str, user_message: ChatMessage, user: Candidate, temperature=0.7
) -> AsyncGenerator[ChatMessage, None]:
"""
Generate a response based on the user message and the provided LLM.
Args:
llm: The language model to use for generation.
model: The specific model to use.
user_message: The message from the user.
user: Optional user information.
temperature: The temperature setting for generation.
Yields:
ChatMessage: The generated response.
"""
logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
if user.id != user_message.sender_id:
logger.error(f"User {user.username} id does not match message {user_message.sender_id}")
raise ValueError("User does not match message sender")
chat_message = ChatMessage(
session_id=user_message.session_id,
tunables=user_message.tunables,
status=ChatStatusType.INITIALIZING,
type=ChatMessageType.PREPARING,
sender=ChatSenderType.ASSISTANT,
content="",
timestamp=datetime.now(UTC)
)
chat_message.metadata = ChatMessageMetaData()
chat_message.metadata.options = ChatOptions(
seed=8911,
num_ctx=self.context_size,
temperature=temperature, # Higher temperature to encourage tool usage
)
# Create a dict for storing various timing stats
chat_message.metadata.timers = {}
self.metrics.generate_count.labels(agent=self.agent_type).inc()
with self.metrics.generate_duration.labels(agent=self.agent_type).time():
rag_message : Optional[ChatMessage] = None
async for rag_message in self.generate_rag_results(chat_message=user_message):
if rag_message.status == ChatStatusType.ERROR:
chat_message.status = rag_message.status
chat_message.content = rag_message.content
yield chat_message
return
yield rag_message
if rag_message:
chat_message.content = ""
rag_results: List[ChromaDBGetResponse] = rag_message.metadata.rag_results
chat_message.metadata.rag_results = rag_results
for chroma_results in rag_results:
for index, metadata in enumerate(chroma_results.metadatas):
content = "\n".join([
line.strip()
for line in chroma_results.documents[index].split("\n")
if line
]).strip()
chat_message.content += f"""
Source: {metadata.get("doc_type", "unknown")}: {metadata.get("path", "")}
Document reference: {chroma_results.ids[index]}
Content: { content }
"""
chat_message.status = ChatStatusType.DONE
chat_message.type = ChatMessageType.RAG_RESULT
yield chat_message
# Register the base agent
agent_registry.register(Chat._agent_type, Chat)

View File

@ -63,7 +63,7 @@ class CandidateEntity(Candidate):
# Check if file exists
return user_info_path.is_file()
def get_or_create_agent(self, agent_type: ChatContextType, **kwargs) -> agents.Agent:
def get_or_create_agent(self, agent_type: ChatContextType, **kwargs) -> agents.Agent:
"""
Get or create an agent of the specified type for this candidate.

View File

@ -382,10 +382,11 @@ def is_field_optional(field_info: Any, field_type: Any, debug: bool = False) ->
print(f" └─ RESULT: Required (has specific enum default: {default_val.value})")
return False
# Any other actual default value makes it optional
# FIXED: Fields with actual default values (like [], "", 0) should be REQUIRED
# because they will always have a value (either provided or the default)
if debug:
print(f" └─ RESULT: Optional (has actual default value)")
return True
print(f" └─ RESULT: Required (has actual default value - field will always have a value)")
return False # Changed from True to False
else:
if debug:
print(f" └─ No default attribute found")

View File

@ -50,6 +50,7 @@ from llm_manager import llm_manager
import entities
from email_service import VerificationEmailRateLimiter, email_service
from device_manager import DeviceManager
import agents
# =============================
# Import Pydantic models
@ -65,10 +66,11 @@ from models import (
Job, JobApplication, ApplicationStatus,
# Chat models
ChatSession, ChatMessage, ChatContext, ChatQuery, ChatStatusType, ChatMessageBase, ChatMessageUser, ChatSenderType, ChatMessageType,
ChatSession, ChatMessage, ChatContext, ChatQuery, ChatStatusType, ChatMessageBase, ChatMessageUser, ChatSenderType, ChatMessageType, ChatContextType,
ChatMessageRagSearch,
# Supporting models
Location, MFARequest, MFAData, MFARequestResponse, MFAVerifyRequest, ResendVerificationRequest, Skill, WorkExperience, Education,
Location, MFARequest, MFAData, MFARequestResponse, MFAVerifyRequest, RagContentResponse, ResendVerificationRequest, Skill, WorkExperience, Education,
# Email
EmailVerificationRequest
@ -161,10 +163,10 @@ ALGORITHM = "HS256"
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
logger.error(traceback.format_exc())
logger.error("❌ Validation error:", exc.errors())
logger.error(f"❌ Validation error {request.method} {request.url.path}: {str(exc)}")
return JSONResponse(
status_code=HTTP_422_UNPROCESSABLE_ENTITY,
content=json.dumps({"detail": exc.errors()}),
content=json.dumps({"detail": str(exc)}),
)
# ============================
@ -228,13 +230,16 @@ async def get_current_user(
# Check candidates
candidate = await database.get_candidate(user_id)
if candidate:
# logger.info(f"🔑 Current user is candidate: {candidate['id']}")
return Candidate.model_validate(candidate)
# Check employers
employer = await database.get_employer(user_id)
if employer:
# logger.info(f"🔑 Current user is employer: {employer['id']}")
return Employer.model_validate(employer)
logger.warning(f"⚠️ User {user_id} not found in database")
raise HTTPException(status_code=404, detail="User not found")
except Exception as e:
@ -324,6 +329,65 @@ def filter_and_paginate(
return paginated_items, total
async def stream_agent_response(chat_agent: agents.Agent,
user_message: ChatMessageUser,
candidate: Candidate,
chat_session_data: Dict[str, Any] | None = None,
database: RedisDatabase | None = None) -> StreamingResponse:
async def message_stream_generator():
"""Generator to stream messages with persistence"""
last_log = None
final_message = None
async for generated_message in chat_agent.generate(
llm=llm_manager.get_llm(),
model=defines.model,
user_message=user_message,
user=candidate,
):
# Store reference to the complete AI message
if generated_message.status == ChatStatusType.DONE:
final_message = generated_message
# If the message is not done, convert it to a ChatMessageBase to remove
# metadata and other unnecessary fields for streaming
if generated_message.status != ChatStatusType.DONE:
generated_message = model_cast.cast_to_model(ChatMessageBase, generated_message)
json_data = generated_message.model_dump(mode='json', by_alias=True, exclude_unset=True)
json_str = json.dumps(json_data)
log = f"🔗 Message status={generated_message.status}, sender={getattr(generated_message, 'sender', 'unknown')}"
if last_log != log:
last_log = log
logger.info(log)
yield f"data: {json_str}\n\n"
# After streaming is complete, persist the final AI message to database
if final_message and final_message.status == ChatStatusType.DONE:
try:
if database and chat_session_data:
await database.add_chat_message(final_message.session_id, final_message.model_dump())
logger.info(f"🤖 Message saved to database for session {final_message.session_id}")
# Update session last activity again
chat_session_data["lastActivity"] = datetime.now(UTC).isoformat()
await database.set_chat_session(final_message.session_id, chat_session_data)
except Exception as e:
logger.error(f"❌ Failed to save message to database: {e}")
return StreamingResponse(
message_stream_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)
# ============================
# API Router Setup
# ============================
@ -709,12 +773,14 @@ async def verify_email(
verification_data = await database.get_email_verification_token(request.token)
if not verification_data:
logger.warning(f"⚠️ Invalid verification token: {request.token}")
return JSONResponse(
status_code=400,
content=create_error_response("INVALID_TOKEN", "Invalid or expired verification token")
)
if verification_data.get("verified"):
logger.warning(f"⚠️ Attempt to verify already verified email: {verification_data['email']}")
return JSONResponse(
status_code=400,
content=create_error_response("ALREADY_VERIFIED", "Email already verified")
@ -723,6 +789,7 @@ async def verify_email(
# Check expiration
expires_at = datetime.fromisoformat(verification_data["expires_at"])
if datetime.now(timezone.utc) > expires_at:
logger.warning(f"⚠️ Verification token expired for: {verification_data['email']}")
return JSONResponse(
status_code=400,
content=create_error_response("TOKEN_EXPIRED", "Verification token has expired")
@ -1398,6 +1465,93 @@ async def get_candidate(
content=create_error_response("FETCH_ERROR", str(e))
)
@api_router.post("/candidates/rag-content")
async def post_candidate_vector_content(
doc_id: str = Body(...),
current_user = Depends(get_current_user)
):
try:
if current_user.user_type != "candidate":
return JSONResponse(
status_code=403,
content=create_error_response("FORBIDDEN", "Only candidates can access this endpoint")
)
candidate : Candidate = current_user
async with entities.get_candidate_entity(candidate=candidate) as candidate_entity:
collection = candidate_entity.umap_collection
if not collection:
return JSONResponse(
{"error": "No UMAP collection found"}, status_code=404
)
if not collection.get("metadatas", None):
return JSONResponse(f"Document id {doc_id} not found.", 404)
for index, id in enumerate(collection.get("ids", [])):
if id == doc_id:
metadata = collection.get("metadatas", [])[index].copy()
content = candidate_entity.file_watcher.prepare_metadata(metadata)
rag_response = RagContentResponse(id=id, content=content, metadata=metadata)
logger.info(f"✅ Fetched RAG content for document id {id} for candidate {candidate.username}")
return create_success_response(rag_response.model_dump(by_alias=True, exclude_unset=True))
return JSONResponse(f"Document id {doc_id} not found.", 404)
except Exception as e:
logger.error(f"❌ Post candidate content error: {e}")
return JSONResponse(
status_code=500,
content=create_error_response("FETCH_ERROR", str(e))
)
@api_router.post("/candidates/rag-vectors")
async def post_candidate_vectors(
dimensions: int = Body(...),
current_user = Depends(get_current_user)
):
try:
if current_user.user_type != "candidate":
return JSONResponse(
status_code=403,
content=create_error_response("FORBIDDEN", "Only candidates can access this endpoint")
)
candidate : Candidate = current_user
async with entities.get_candidate_entity(candidate=candidate) as candidate_entity:
collection = candidate_entity.umap_collection
if not collection:
logger.error(f"❌ Candidate collection not found")
return JSONResponse(
status_code=404,
content=create_error_response("NOT_FOUND", "Candidate collection not found")
)
if dimensions == 2:
umap_embedding = candidate_entity.file_watcher.umap_embedding_2d
else:
umap_embedding = candidate_entity.file_watcher.umap_embedding_3d
if len(umap_embedding) == 0:
return JSONResponse(
status_code=404,
content=create_error_response("NOT_FOUND", "Candidate collection embedding not found")
)
result = {
"ids": collection.get("ids", []),
"metadatas": collection.get("metadatas", []),
"documents": collection.get("documents", []),
"embeddings": umap_embedding.tolist(),
"size": candidate_entity.file_watcher.collection.count()
}
return create_success_response(result)
except Exception as e:
logger.error(f"❌ Post candidate vectors error: {e}")
return JSONResponse(
status_code=500,
content=create_error_response("FETCH_ERROR", str(e))
)
@api_router.patch("/candidates/{candidate_id}")
async def update_candidate(
candidate_id: str = Path(...),
@ -1418,6 +1572,7 @@ async def update_candidate(
# Check authorization (user can only update their own profile)
if candidate.id != current_user.id:
logger.warning(f"⚠️ Unauthorized update attempt by user {current_user.id} on candidate {candidate_id}")
return JSONResponse(
status_code=403,
content=create_error_response("FORBIDDEN", "Cannot update another user's profile")
@ -1772,6 +1927,56 @@ async def get_chat_statistics(
content=create_error_response("STATS_ERROR", str(e))
)
@api_router.post("/candidates/rag-search")
async def post_candidate_rag_search(
query: str = Body(...),
current_user = Depends(get_current_user)
):
"""Get chat activity summary for a candidate"""
try:
if current_user.user_type != "candidate":
logger.warning(f"⚠️ Unauthorized RAG search attempt by user {current_user.id}")
return JSONResponse(
status_code=403,
content=create_error_response("FORBIDDEN", "Only candidates can access this endpoint")
)
candidate : Candidate = current_user
chat_type = ChatContextType.RAG_SEARCH
# Get RAG search data
async with entities.get_candidate_entity(candidate=candidate) as candidate_entity:
# Entity automatically released when done
chat_agent = candidate_entity.get_or_create_agent(agent_type=chat_type)
if not chat_agent:
return JSONResponse(
status_code=400,
content=create_error_response("AGENT_NOT_FOUND", "No agent found for this chat type")
)
user_message = ChatMessageUser(sender_id=candidate.id, session_id="", content=query, timestamp=datetime.now(UTC))
rag_message = None
async for generated_message in chat_agent.generate(
llm=llm_manager.get_llm(),
model=defines.model,
user_message=user_message,
user=candidate,
):
rag_message = generated_message
if not rag_message:
return JSONResponse(
status_code=500,
content=create_error_response("NO_RESPONSE", "No response generated for the RAG search")
)
return create_success_response(rag_message.metadata.rag_results[0].model_dump(by_alias=True, exclude_unset=True))
except Exception as e:
logger.error(f"❌ Get candidate chat summary error: {e}")
return JSONResponse(
status_code=500,
content=create_error_response("SUMMARY_ERROR", str(e))
)
@api_router.get("/candidates/{username}/chat-summary")
async def get_candidate_chat_summary(
username: str = Path(...),
@ -1985,58 +2190,13 @@ async def post_chat_session_message_stream(
chat_session_data["lastActivity"] = datetime.now(UTC).isoformat()
await database.set_chat_session(user_message.session_id, chat_session_data)
async def message_stream_generator():
"""Generator to stream messages with persistence"""
last_log = None
final_message = None
async for generated_message in chat_agent.generate(
llm=llm_manager.get_llm(),
model=defines.model,
user_message=user_message,
user=current_user,
):
# Store reference to the complete AI message
if generated_message.status == ChatStatusType.DONE:
final_message = generated_message
# If the message is not done, convert it to a ChatMessageBase to remove
# metadata and other unnecessary fields for streaming
if generated_message.status != ChatStatusType.DONE:
generated_message = model_cast.cast_to_model(ChatMessageBase, generated_message)
json_data = generated_message.model_dump(mode='json', by_alias=True, exclude_unset=True)
json_str = json.dumps(json_data)
log = f"🔗 Message status={generated_message.status}, sender={getattr(generated_message, 'sender', 'unknown')}"
if last_log != log:
last_log = log
logger.info(log)
yield f"data: {json_str}\n\n"
# After streaming is complete, persist the final AI message to database
if final_message and final_message.status == ChatStatusType.DONE:
try:
await database.add_chat_message(final_message.session_id, final_message.model_dump())
logger.info(f"🤖 AI message saved to database for session {final_message.session_id}")
# Update session last activity again
chat_session_data["lastActivity"] = datetime.now(UTC).isoformat()
await database.set_chat_session(final_message.session_id, chat_session_data)
except Exception as e:
logger.error(f"❌ Failed to save AI message to database: {e}")
return StreamingResponse(
message_stream_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)
return stream_agent_response(
chat_agent=chat_agent,
user_message=user_message,
candidate=candidate,
database=database,
chat_session_data=chat_session_data,
)
except Exception as e:
logger.error(traceback.format_exc())
@ -2544,10 +2704,11 @@ logger.info(f"Debug mode is {'enabled' if defines.debug else 'disabled'}")
async def log_requests(request: Request, call_next):
try:
if defines.debug and not re.match(rf"{defines.api_prefix}/metrics", request.url.path):
logger.info(f"Request path: {request.url.path}, Method: {request.method}, Remote: {request.client.host}")
logger.info(f"📝 Request {request.method}: {request.url.path}, Remote: {request.client.host}")
response = await call_next(request)
if defines.debug and not re.match(rf"{defines.api_prefix}/metrics", request.url.path):
logger.info(f"Response status: {response.status_code}, Path: {request.url.path}, Method: {request.method}")
if response.status_code < 200 or response.status_code >= 300:
logger.warning(f"⚠️ Response {request.method} {response.status_code}: Path: {request.url.path}")
return response
except Exception as e:
logger.error(f"❌ Error processing request: {str(e)}, Path: {request.url.path}, Method: {request.method}")

View File

@ -81,6 +81,7 @@ class ChatMessageType(str, Enum):
PROCESSING = "processing"
RESPONSE = "response"
SEARCHING = "searching"
RAG_RESULT = "rag_result"
SYSTEM = "system"
THINKING = "thinking"
TOOLING = "tooling"
@ -100,6 +101,7 @@ class ChatContextType(str, Enum):
GENERAL = "general"
GENERATE_PERSONA = "generate_persona"
GENERATE_PROFILE = "generate_profile"
RAG_SEARCH = "rag_search"
class AIModelType(str, Enum):
QWEN2_5 = "qwen2.5"
@ -461,6 +463,23 @@ class RagEntry(BaseModel):
description: str = ""
enabled: bool = True
class RagContentMetadata(BaseModel):
source_file: str = Field(..., alias="sourceFile")
line_begin: int = Field(..., alias="lineBegin")
line_end: int = Field(..., alias="lineEnd")
lines: int
chunk_begin: Optional[int] = Field(None, alias="chunkBegin")
chunk_end: Optional[int] = Field(None, alias="chunkEnd")
metadata: Dict[str, Any] = Field(default_factory=dict)
model_config = {
"populate_by_name": True, # Allow both field names and aliases
}
class RagContentResponse(BaseModel):
id: str
content: str
metadata: RagContentMetadata
class Candidate(BaseUser):
user_type: Literal[UserType.CANDIDATE] = Field(UserType.CANDIDATE, alias="userType")
username: str
@ -618,12 +637,14 @@ class JobApplication(BaseModel):
class ChromaDBGetResponse(BaseModel):
# Chroma fields
ids: List[str] = []
embeddings: List[List[float]] = Field(default=[])
embeddings: List[List[float]] = []
documents: List[str] = []
metadatas: List[Dict[str, Any]] = []
distances: List[float] = []
# Additional fields
name: str = ""
size: int = 0
dimensions: int = 2 | 3
query: str = ""
query_embedding: Optional[List[float]] = Field(default=None, alias="queryEmbedding")
umap_embedding_2d: Optional[List[float]] = Field(default=None, alias="umapEmbedding2D")
@ -663,6 +684,12 @@ class ChatMessageBase(BaseModel):
"populate_by_name": True # Allow both field names and aliases
}
class ChatMessageRagSearch(ChatMessageBase):
status: ChatStatusType = ChatStatusType.DONE
type: ChatMessageType = ChatMessageType.RAG_RESULT
sender: ChatSenderType = ChatSenderType.USER
dimensions: int = 2 | 3
class ChatMessageMetaData(BaseModel):
model: AIModelType = AIModelType.QWEN2_5
temperature: float = 0.7