Compare commits

...

11 Commits

Author SHA1 Message Date
8a4f94817a Working! 2025-04-30 23:00:16 -07:00
10f28b0e9b Fix package.json with craco 2025-04-30 22:00:38 -07:00
2a3dc56897 Starting to work again 2025-04-30 21:42:30 -07:00
7f24d8870c onion peeling 2025-04-30 16:43:02 -07:00
3094288e46 onion peeling 2025-04-30 16:05:46 -07:00
d1940e18e5 Starting to work again 2025-04-30 15:01:50 -07:00
e607e3a2f2 Starting to work again 2025-04-30 12:57:51 -07:00
4614dbb237 Almost working? 2025-04-29 17:46:10 -07:00
622c33545e Almost working? 2025-04-29 16:48:42 -07:00
c3cf9a9c76 Almost working? 2025-04-29 16:04:43 -07:00
90a83a7313 Almost working? 2025-04-29 15:53:04 -07:00
22 changed files with 1425 additions and 1208 deletions

View File

@ -293,8 +293,13 @@ RUN { \
echo ' openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout src/key.pem -out src/cert.pem -subj "/C=US/ST=OR/L=Portland/O=Development/CN=localhost"'; \
echo ' fi' ; \
echo ' while true; do'; \
echo ' echo "Launching Backstory server..."'; \
echo ' python src/server.py "${@}" || echo "Backstory server died. Restarting in 3 seconds."'; \
echo ' if [[ ! -e /opt/backstory/block-server ]]; then'; \
echo ' echo "Launching Backstory server..."'; \
echo ' python src/server.py "${@}" || echo "Backstory server died."'; \
echo ' else'; \
echo ' echo "block-server file exists. Not launching."'; \
echo ' fi' ; \
echo ' echo "Sleeping for 3 seconds."'; \
echo ' sleep 3'; \
echo ' done' ; \
echo 'fi'; \

File diff suppressed because it is too large Load Diff

View File

@ -18,6 +18,7 @@
"@types/node": "^16.18.126",
"@types/react": "^19.0.12",
"@types/react-dom": "^19.0.4",
"@uiw/react-json-view": "^2.0.0-alpha.31",
"mui-markdown": "^1.2.6",
"react": "^19.0.0",
"react-dom": "^19.0.0",
@ -55,6 +56,7 @@
]
},
"devDependencies": {
"@types/plotly.js": "^2.35.5"
"@types/plotly.js": "^2.35.5",
"@craco/craco": "^0.0.0"
}
}

View File

@ -26,8 +26,8 @@ interface ConversationHandle {
interface BackstoryMessage {
prompt: string;
preamble: string;
content: string;
preamble: {};
full_content: string;
response: string;
metadata: {
rag: { documents: [] };
@ -138,6 +138,7 @@ const Conversation = forwardRef<ConversationHandle, ConversationProps>(({
let filtered = [];
if (messageFilter === undefined) {
filtered = conversation;
// console.log('No message filter provided. Using all messages.', filtered);
} else {
//console.log('Filtering conversation...')
filtered = messageFilter(conversation); /* Do not copy conversation or useEffect will loop forever */
@ -206,8 +207,8 @@ const Conversation = forwardRef<ConversationHandle, ConversationProps>(({
}, {
role: 'assistant',
prompt: message.prompt || "",
preamble: message.preamble || "",
full_content: message.content || "",
preamble: message.preamble || {},
full_content: message.full_content || "",
content: message.response || "",
metadata: message.metadata,
actions: message.actions,
@ -403,52 +404,59 @@ const Conversation = forwardRef<ConversationHandle, ConversationProps>(({
try {
const update = JSON.parse(line);
// Force an immediate state update based on the message type
if (update.status === 'processing') {
// Update processing message with immediate re-render
setProcessingMessage({ role: 'status', content: update.message });
// Add a small delay to ensure React has time to update the UI
await new Promise(resolve => setTimeout(resolve, 0));
} else if (update.status === 'done') {
// Replace processing message with final result
if (onResponse) {
update.message = onResponse(update.message);
}
setProcessingMessage(undefined);
const backstoryMessage: BackstoryMessage = update.message;
setConversation([
...conversationRef.current, {
role: 'user',
content: backstoryMessage.prompt || "",
}, {
role: 'assistant',
prompt: backstoryMessage.prompt || "",
preamble: backstoryMessage.preamble || "",
full_content: backstoryMessage.content || "",
content: backstoryMessage.response || "",
metadata: backstoryMessage.metadata,
actions: backstoryMessage.actions,
}] as MessageList);
// Add a small delay to ensure React has time to update the UI
await new Promise(resolve => setTimeout(resolve, 0));
const metadata = update.message.metadata;
if (metadata) {
const evalTPS = metadata.eval_count * 10 ** 9 / metadata.eval_duration;
const promptTPS = metadata.prompt_eval_count * 10 ** 9 / metadata.prompt_eval_duration;
setLastEvalTPS(evalTPS ? evalTPS : 35);
setLastPromptTPS(promptTPS ? promptTPS : 35);
updateContextStatus();
}
} else if (update.status === 'error') {
// Show error
setProcessingMessage({ role: 'error', content: update.message });
setTimeout(() => {
switch (update.status) {
case 'processing':
case 'thinking':
// Force an immediate state update based on the message type
// Update processing message with immediate re-render
setProcessingMessage({ role: 'status', content: update.response });
// Add a small delay to ensure React has time to update the UI
await new Promise(resolve => setTimeout(resolve, 0));
break;
case 'done':
console.log('Done processing:', update);
// Replace processing message with final result
if (onResponse) {
update.message = onResponse(update);
}
setProcessingMessage(undefined);
}, 5000);
const backstoryMessage: BackstoryMessage = update;
setConversation([
...conversationRef.current, {
// role: 'user',
// content: backstoryMessage.prompt || "",
// }, {
role: 'assistant',
origin: type,
content: backstoryMessage.response || "",
prompt: backstoryMessage.prompt || "",
preamble: backstoryMessage.preamble || {},
full_content: backstoryMessage.full_content || "",
metadata: backstoryMessage.metadata,
actions: backstoryMessage.actions,
}] as MessageList);
// Add a small delay to ensure React has time to update the UI
await new Promise(resolve => setTimeout(resolve, 0));
// Add a small delay to ensure React has time to update the UI
await new Promise(resolve => setTimeout(resolve, 0));
const metadata = update.metadata;
if (metadata) {
const evalTPS = metadata.eval_count * 10 ** 9 / metadata.eval_duration;
const promptTPS = metadata.prompt_eval_count * 10 ** 9 / metadata.prompt_eval_duration;
setLastEvalTPS(evalTPS ? evalTPS : 35);
setLastPromptTPS(promptTPS ? promptTPS : 35);
updateContextStatus();
}
break;
case 'error':
// Show error
setProcessingMessage({ role: 'error', content: update.response });
setTimeout(() => {
setProcessingMessage(undefined);
}, 5000);
// Add a small delay to ensure React has time to update the UI
await new Promise(resolve => setTimeout(resolve, 0));
break;
}
} catch (e) {
setSnack("Error processing query", "error")
@ -462,25 +470,44 @@ const Conversation = forwardRef<ConversationHandle, ConversationProps>(({
try {
const update = JSON.parse(buffer);
if (update.status === 'done') {
if (onResponse) {
update.message = onResponse(update.message);
}
setProcessingMessage(undefined);
const backstoryMessage: BackstoryMessage = update.message;
setConversation([
...conversationRef.current, {
role: 'user',
content: backstoryMessage.prompt || "",
}, {
role: 'assistant',
prompt: backstoryMessage.prompt || "",
preamble: backstoryMessage.preamble || "",
full_content: backstoryMessage.content || "",
content: backstoryMessage.response || "",
metadata: backstoryMessage.metadata,
actions: backstoryMessage.actions,
}] as MessageList);
switch (update.status) {
case 'processing':
case 'thinking':
// Force an immediate state update based on the message type
// Update processing message with immediate re-render
setProcessingMessage({ role: 'status', content: update.response });
// Add a small delay to ensure React has time to update the UI
await new Promise(resolve => setTimeout(resolve, 0));
break;
case 'error':
// Show error
setProcessingMessage({ role: 'error', content: update.response });
setTimeout(() => {
setProcessingMessage(undefined);
}, 5000);
break;
case 'done':
console.log('Done processing:', update);
if (onResponse) {
update.message = onResponse(update);
}
setProcessingMessage(undefined);
const backstoryMessage: BackstoryMessage = update;
setConversation([
...conversationRef.current, {
// role: 'user',
// content: backstoryMessage.prompt || "",
// }, {
role: 'assistant',
origin: type,
prompt: backstoryMessage.prompt || "",
content: backstoryMessage.response || "",
preamble: backstoryMessage.preamble || {},
full_content: backstoryMessage.full_content || "",
metadata: backstoryMessage.metadata,
actions: backstoryMessage.actions,
}] as MessageList);
break;
}
} catch (e) {
setSnack("Error processing query", "error")

View File

@ -19,6 +19,7 @@ import Typography from '@mui/material/Typography';
import ExpandMoreIcon from '@mui/icons-material/ExpandMore';
import { ExpandMore } from './ExpandMore';
import { SxProps, Theme } from '@mui/material';
import JsonView from '@uiw/react-json-view';
import { ChatBubble } from './ChatBubble';
import { StyledMarkdown } from './StyledMarkdown';
@ -32,6 +33,8 @@ type MessageRoles = 'info' | 'user' | 'assistant' | 'system' | 'status' | 'error
type MessageData = {
role: MessageRoles,
content: string,
full_content?: string,
disableCopy?: boolean,
user?: string,
title?: string,
@ -48,7 +51,6 @@ interface MessageMetaData {
vector_embedding: number[];
},
origin: string,
full_query?: string,
rag: any,
tools: any[],
eval_count: number,
@ -87,7 +89,6 @@ interface MessageMetaProps {
const MessageMeta = (props: MessageMetaProps) => {
const {
/* MessageData */
full_query,
rag,
tools,
eval_count,
@ -95,7 +96,7 @@ const MessageMeta = (props: MessageMetaProps) => {
prompt_eval_count,
prompt_eval_duration,
} = props.metadata || {};
const messageProps = props.messageProps;
const message = props.messageProps.message;
return (<>
<Box sx={{ fontSize: "0.8rem", mb: 1 }}>
@ -137,7 +138,7 @@ const MessageMeta = (props: MessageMetaProps) => {
</TableContainer>
{
full_query !== undefined &&
message.full_content !== undefined &&
<Accordion>
<AccordionSummary expandIcon={<ExpandMoreIcon />}>
<Box sx={{ fontSize: "0.8rem" }}>
@ -145,7 +146,7 @@ const MessageMeta = (props: MessageMetaProps) => {
</Box>
</AccordionSummary>
<AccordionDetails>
<pre style={{ "display": "block", "position": "relative" }}><CopyBubble content={full_query?.trim()} />{full_query?.trim()}</pre>
<pre style={{ "display": "block", "position": "relative" }}><CopyBubble content={message.full_content?.trim()} />{message.full_content?.trim()}</pre>
</AccordionDetails>
</Accordion>
}
@ -182,14 +183,18 @@ const MessageMeta = (props: MessageMetaProps) => {
</Accordion>
}
{
rag?.name !== undefined && <>
<Accordion>
rag.map((rag: any) => (
<Accordion key={rag.name}>
<AccordionSummary expandIcon={<ExpandMoreIcon />}>
<Box sx={{ fontSize: "0.8rem" }}>
Top RAG {rag.ids.length} matches from '{rag.name}' collection against embedding vector of {rag.query_embedding.length} dimensions
</Box>
</AccordionSummary>
<AccordionDetails>
<Box sx={{ fontSize: "0.8rem" }}>
UMAP Vector Visualization of '{rag.name}' RAG
</Box>
<VectorVisualizer inline {...props.messageProps} {...props.metadata} rag={rag} />
{rag.ids.map((id: number, index: number) => <Box key={index}>
{index !== 0 && <Divider />}
<Box sx={{ fontSize: "0.75rem", display: "flex", flexDirection: "row", mb: 0.5, mt: 0.5 }}>
@ -205,55 +210,33 @@ const MessageMeta = (props: MessageMetaProps) => {
)}
</AccordionDetails>
</Accordion>
<Accordion>
<AccordionSummary expandIcon={<ExpandMoreIcon />}>
<Box sx={{ fontSize: "0.8rem" }}>
UMAP Vector Visualization of RAG
</Box>
</AccordionSummary>
<AccordionDetails>
<VectorVisualizer inline {...messageProps} {...props.metadata} rag={rag} />
</AccordionDetails>
</Accordion>
<Accordion>
<AccordionSummary expandIcon={<ExpandMoreIcon />}>
<Box sx={{ fontSize: "0.8rem" }}>
All response fields
</Box>
</AccordionSummary>
<AccordionDetails>
{Object.entries(props.messageProps.message)
.filter(([key, value]) => key !== undefined && value !== undefined)
.map(([key, value]) => (typeof (value) !== "string" || value?.trim() !== "") &&
<Accordion key={key}>
<AccordionSummary sx={{ fontSize: "1rem", fontWeight: "bold" }} expandIcon={<ExpandMoreIcon />}>
{key}
</AccordionSummary>
<AccordionDetails>
{key === "metadata" &&
Object.entries(value)
.filter(([key, value]) => key !== undefined && value !== undefined)
.map(([key, value]) => (
<Accordion key={`metadata.${key}`}>
<AccordionSummary sx={{ fontSize: "1rem", fontWeight: "bold" }} expandIcon={<ExpandMoreIcon />}>
{key}
</AccordionSummary>
<AccordionDetails>
<pre>{`${typeof (value) !== "object" ? value : JSON.stringify(value)}`}</pre>
</AccordionDetails>
</Accordion>
))}
{key !== "metadata" &&
<pre>{typeof (value) !== "object" ? value : JSON.stringify(value)}</pre>
}
</AccordionDetails>
</Accordion>
)}
</AccordionDetails>
</Accordion>
</>
))
}
<Accordion>
<AccordionSummary expandIcon={<ExpandMoreIcon />}>
<Box sx={{ fontSize: "0.8rem" }}>
All response fields
</Box>
</AccordionSummary>
<AccordionDetails>
{Object.entries(message)
.filter(([key, value]) => key !== undefined && value !== undefined)
.map(([key, value]) => (typeof (value) !== "string" || value?.trim() !== "") &&
<Accordion key={key}>
<AccordionSummary sx={{ fontSize: "1rem", fontWeight: "bold" }} expandIcon={<ExpandMoreIcon />}>
{key}
</AccordionSummary>
<AccordionDetails>
{typeof (value) === "string" ?
<pre>{value}</pre> :
<JsonView collapsed={1} value={value as any} style={{ fontSize: "0.8rem", maxHeight: "20rem", overflow: "auto" }} />
}
</AccordionDetails>
</Accordion>
)}
</AccordionDetails>
</Accordion>
</>);
};

View File

@ -82,6 +82,7 @@ const emojiMap: Record<string, string> = {
query: '🔍',
resume: '📄',
projects: '📁',
jobs: '📁',
'performance-reviews': '📄',
news: '📰',
};
@ -91,7 +92,8 @@ const colorMap: Record<string, string> = {
resume: '#4A7A7D', // Dusty Teal — secondary theme color
projects: '#1A2536', // Midnight Blue — rich and deep
news: '#D3CDBF', // Warm Gray — soft and neutral
'performance-reviews': '#FF0000', // Bright red
'performance-reviews': '#FFD0D0', // Light red
'jobs': '#F3aD8F', // Warm Gray — soft and neutral
};
const sizeMap: Record<string, number> = {
@ -156,7 +158,7 @@ const VectorVisualizer: React.FC<VectorVisualizerProps> = (props: VectorVisualiz
useEffect(() => {
if (!result || !result.embeddings) return;
if (result.embeddings.length === 0) return;
console.log('Result:', result);
const vectors: (number[])[] = [...result.embeddings];
const documents = [...result.documents || []];
const metadatas = [...result.metadatas || []];

View File

@ -2,12 +2,12 @@
# Ensure input was provided
if [[ -z "$1" ]]; then
echo "Usage: $0 <path/to/python_script.py>"
exit 1
TARGET=$(readlink -f "src/server.py")
else
TARGET=$(readlink -f "$1")
fi
# Resolve user-supplied path to absolute path
TARGET=$(readlink -f "$1")
if [[ ! -f "$TARGET" ]]; then
echo "Target file '$TARGET' not found."

View File

@ -1,3 +1,7 @@
from utils import logger
from typing import Literal, TypeAlias, get_args, List, Generator, Iterator, AsyncGenerator, TYPE_CHECKING, Optional, ClassVar
# %%
# Imports [standard]
# Standard library modules (no try-except needed)
@ -34,6 +38,7 @@ try_import("sklearn")
import ollama
import requests
from bs4 import BeautifulSoup
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import JSONResponse, StreamingResponse, FileResponse, RedirectResponse
from fastapi.middleware.cors import CORSMiddleware
@ -44,8 +49,10 @@ from sklearn.preprocessing import MinMaxScaler
from utils import (
rag as Rag,
Context, Conversation, Session, Message, Chat, Resume, JobDescription, FactCheck,
defines
Context, Conversation, Message,
Agent,
defines,
logger
)
from tools import (
@ -250,25 +257,6 @@ def parse_args():
default=LOG_LEVEL, help=f"Set the logging level. default={LOG_LEVEL}")
return parser.parse_args()
def setup_logging(level):
global logging
numeric_level = getattr(logging, level.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError(f"Invalid log level: {level}")
logging.basicConfig(
level=numeric_level,
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True
)
# Now reduce verbosity for FastAPI, Uvicorn, Starlette
for noisy_logger in ("uvicorn", "uvicorn.error", "uvicorn.access", "fastapi", "starlette"):
logging.getLogger(noisy_logger).setLevel(logging.WARNING)
logging.info(f"Logging is set to {level} level.")
# %%
@ -288,10 +276,10 @@ async def AnalyzeSite(llm, model: str, url : str, question : str):
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
logging.info(f"Fetching {url}")
logger.info(f"Fetching {url}")
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
logging.info(f"{url} returned. Processing...")
logger.info(f"{url} returned. Processing...")
# Parse the HTML
soup = BeautifulSoup(response.text, "html.parser")
@ -313,7 +301,7 @@ async def AnalyzeSite(llm, model: str, url : str, question : str):
text = text[:max_chars] + "..."
# Create Ollama client
# logging.info(f"Requesting summary of: {text}")
# logger.info(f"Requesting summary of: {text}")
# Generate summary using Ollama
prompt = f"CONTENTS:\n\n{text}\n\n{question}"
@ -321,7 +309,7 @@ async def AnalyzeSite(llm, model: str, url : str, question : str):
system="You are given the contents of {url}. Answer the question about the contents",
prompt=prompt)
#logging.info(response["response"])
#logger.info(response["response"])
return {
"source": "summarizer-llm",
@ -359,8 +347,23 @@ def llm_tools(tools):
# %%
class WebServer:
@asynccontextmanager
async def lifespan(self, app: FastAPI):
# Start the file watcher
self.observer, self.file_watcher = Rag.start_file_watcher(
llm=self.llm,
watch_directory=defines.doc_dir,
recreate=False # Don't recreate if exists
)
logger.info(f"API started with {self.file_watcher.collection.count()} documents in the collection")
yield
if self.observer:
self.observer.stop()
self.observer.join()
logger.info("File watcher stopped")
def __init__(self, llm, model=MODEL_NAME):
self.app = FastAPI()
self.app = FastAPI(lifespan=self.lifespan)
self.contexts = {}
self.llm = llm
self.model = model
@ -375,7 +378,7 @@ class WebServer:
else:
allow_origins=["http://battle-linux.ketrenos.com:3000"]
logging.info(f"Allowed origins: {allow_origins}")
logger.info(f"Allowed origins: {allow_origins}")
self.app.add_middleware(
CORSMiddleware,
@ -385,38 +388,19 @@ class WebServer:
allow_headers=["*"],
)
@self.app.on_event("startup")
async def startup_event():
# Start the file watcher
self.observer, self.file_watcher = Rag.start_file_watcher(
llm=llm,
watch_directory=defines.doc_dir,
recreate=False # Don't recreate if exists
)
print(f"API started with {self.file_watcher.collection.count()} documents in the collection")
@self.app.on_event("shutdown")
async def shutdown_event():
if self.observer:
self.observer.stop()
self.observer.join()
print("File watcher stopped")
self.setup_routes()
def setup_routes(self):
@self.app.get("/")
async def root():
context = self.create_context()
logging.info(f"Redirecting non-session to {context.id}")
logger.info(f"Redirecting non-context to {context.id}")
return RedirectResponse(url=f"/{context.id}", status_code=307)
#return JSONResponse({"redirect": f"/{context.id}"})
@self.app.put("/api/umap/{context_id}")
async def put_umap(context_id: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
logger.info(f"{request.method} {request.url.path}")
try:
if not self.file_watcher:
raise Exception("File watcher not initialized")
@ -429,29 +413,36 @@ class WebServer:
dimensions = data.get("dimensions", 2)
result = self.file_watcher.umap_collection
if not result:
return JSONResponse({"error": "No UMAP collection found"}, status_code=404)
if dimensions == 2:
logging.info("Returning 2D UMAP")
logger.info("Returning 2D UMAP")
umap_embedding = self.file_watcher.umap_embedding_2d
else:
logging.info("Returning 3D UMAP")
logger.info("Returning 3D UMAP")
umap_embedding = self.file_watcher.umap_embedding_3d
if len(umap_embedding) == 0:
return JSONResponse({"error": "No UMAP embedding found"}, status_code=404)
result["embeddings"] = umap_embedding.tolist()
return JSONResponse(result)
except Exception as e:
logging.error(e)
logger.error(f"put_umap error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return JSONResponse({"error": str(e)}, 500)
@self.app.put("/api/similarity/{context_id}")
async def put_similarity(context_id: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
logger.info(f"{request.method} {request.url.path}")
if not self.file_watcher:
return
raise Exception("File watcher not initialized")
if not is_valid_uuid(context_id):
logging.warning(f"Invalid context_id: {context_id}")
logger.warning(f"Invalid context_id: {context_id}")
return JSONResponse({"error": "Invalid context_id"}, status_code=400)
try:
@ -468,13 +459,13 @@ class WebServer:
return JSONResponse({"error": "No results found"}, status_code=404)
chroma_embedding = np.array(chroma_results["query_embedding"]).flatten() # Ensure correct shape
print(f"Chroma embedding shape: {chroma_embedding.shape}")
logger.info(f"Chroma embedding shape: {chroma_embedding.shape}")
umap_2d = self.file_watcher.umap_model_2d.transform([chroma_embedding])[0].tolist()
print(f"UMAP 2D output: {umap_2d}, length: {len(umap_2d)}") # Debug output
logger.info(f"UMAP 2D output: {umap_2d}, length: {len(umap_2d)}") # Debug output
umap_3d = self.file_watcher.umap_model_3d.transform([chroma_embedding])[0].tolist()
print(f"UMAP 3D output: {umap_3d}, length: {len(umap_3d)}") # Debug output
logger.info(f"UMAP 3D output: {umap_3d}, length: {len(umap_3d)}") # Debug output
return JSONResponse({
**chroma_results,
@ -484,19 +475,19 @@ class WebServer:
})
except Exception as e:
logging.error(e)
logger.error(e)
#return JSONResponse({"error": str(e)}, 500)
@self.app.put("/api/reset/{context_id}/{session_type}")
async def put_reset(context_id: str, session_type: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
@self.app.put("/api/reset/{context_id}/{agent_type}")
async def put_reset(context_id: str, agent_type: str, request: Request):
logger.info(f"{request.method} {request.url.path}")
if not is_valid_uuid(context_id):
logging.warning(f"Invalid context_id: {context_id}")
logger.warning(f"Invalid context_id: {context_id}")
return JSONResponse({"error": "Invalid context_id"}, status_code=400)
context = self.upsert_context(context_id)
session = context.get_session(session_type)
if not session:
return JSONResponse({ "error": f"{session_type} is not recognized", "context": context.id }, status_code=404)
agent = context.get_agent(agent_type)
if not agent:
return JSONResponse({ "error": f"{agent_type} is not recognized", "context": context.id }, status_code=404)
data = await request.json()
try:
@ -504,8 +495,8 @@ class WebServer:
for reset_operation in data["reset"]:
match reset_operation:
case "system_prompt":
logging.info(f"Resetting {reset_operation}")
match session_type:
logger.info(f"Resetting {reset_operation}")
match agent_type:
case "chat":
prompt = system_message
case "job_description":
@ -515,14 +506,14 @@ class WebServer:
case "fact_check":
prompt = system_message
session.system_prompt = prompt
agent.system_prompt = prompt
response["system_prompt"] = { "system_prompt": prompt }
case "rags":
logging.info(f"Resetting {reset_operation}")
logger.info(f"Resetting {reset_operation}")
context.rags = rags.copy()
response["rags"] = context.rags
case "tools":
logging.info(f"Resetting {reset_operation}")
logger.info(f"Resetting {reset_operation}")
context.tools = default_tools(tools)
response["tools"] = context.tools
case "history":
@ -532,19 +523,19 @@ class WebServer:
"fact_check": ("job_description", "resume", "fact_check"),
"chat": ("chat",),
}
resets = reset_map.get(session_type, ())
resets = reset_map.get(agent_type, ())
for mode in resets:
tmp = context.get_session(mode)
tmp = context.get_agent(mode)
if not tmp:
continue
logging.info(f"Resetting {reset_operation} for {mode}")
logger.info(f"Resetting {reset_operation} for {mode}")
context.conversation = Conversation()
context.context_tokens = round(len(str(session.system_prompt)) * 3 / 4) # Estimate context usage
context.context_tokens = round(len(str(agent.system_prompt)) * 3 / 4) # Estimate context usage
response["history"] = []
response["context_used"] = session.context_tokens
response["context_used"] = agent.context_tokens
case "message_history_length":
logging.info(f"Resetting {reset_operation}")
logger.info(f"Resetting {reset_operation}")
context.message_history_length = DEFAULT_HISTORY_LENGTH
response["message_history_length"] = DEFAULT_HISTORY_LENGTH
@ -559,13 +550,13 @@ class WebServer:
@self.app.put("/api/tunables/{context_id}")
async def put_tunables(context_id: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
logger.info(f"{request.method} {request.url.path}")
try:
context = self.upsert_context(context_id)
data = await request.json()
session = context.get_session("chat")
if not session:
agent = context.get_agent("chat")
if not agent:
return JSONResponse({ "error": f"chat is not recognized", "context": context.id }, status_code=404)
for k in data.keys():
match k:
@ -600,7 +591,7 @@ class WebServer:
system_prompt = data[k].strip()
if not system_prompt:
return JSONResponse({ "status": "error", "message": "System prompt can not be empty." })
session.system_prompt = system_prompt
agent.system_prompt = system_prompt
self.save_context(context_id)
return JSONResponse({ "system_prompt": system_prompt })
case "message_history_length":
@ -611,21 +602,21 @@ class WebServer:
case _:
return JSONResponse({ "error": f"Unrecognized tunable {k}"}, status_code=404)
except Exception as e:
logging.error(f"Error in put_tunables: {e}")
logger.error(f"Error in put_tunables: {e}")
return JSONResponse({"error": str(e)}, status_code=500)
@self.app.get("/api/tunables/{context_id}")
async def get_tunables(context_id: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
logger.info(f"{request.method} {request.url.path}")
if not is_valid_uuid(context_id):
logging.warning(f"Invalid context_id: {context_id}")
logger.warning(f"Invalid context_id: {context_id}")
return JSONResponse({"error": "Invalid context_id"}, status_code=400)
context = self.upsert_context(context_id)
session = context.get_session("chat")
if not session:
agent = context.get_agent("chat")
if not agent:
return JSONResponse({ "error": f"chat is not recognized", "context": context.id }, status_code=404)
return JSONResponse({
"system_prompt": session.system_prompt,
"system_prompt": agent.system_prompt,
"message_history_length": context.message_history_length,
"rags": context.rags,
"tools": [ {
@ -636,35 +627,34 @@ class WebServer:
@self.app.get("/api/system-info/{context_id}")
async def get_system_info(context_id: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
logger.info(f"{request.method} {request.url.path}")
return JSONResponse(system_info(self.model))
@self.app.post("/api/chat/{context_id}/{session_type}")
async def post_chat_endpoint(context_id: str, session_type: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
@self.app.post("/api/chat/{context_id}/{agent_type}")
async def post_chat_endpoint(context_id: str, agent_type: str, request: Request):
logger.info(f"{request.method} {request.url.path}")
try:
if not is_valid_uuid(context_id):
logging.warning(f"Invalid context_id: {context_id}")
logger.warning(f"Invalid context_id: {context_id}")
return JSONResponse({"error": "Invalid context_id"}, status_code=400)
context = self.upsert_context(context_id)
try:
data = await request.json()
session = context.get_session(session_type)
if not session and session_type == "job_description":
logging.info(f"Session {session_type} not found. Returning empty history.")
# Create a new session if it doesn't exist
session = context.get_or_create_session("job_description", system_prompt=system_generate_resume, job_description=data["content"])
agent = context.get_agent(agent_type)
if not agent and agent_type == "job_description":
logger.info(f"Agent {agent_type} not found. Returning empty history.")
# Create a new agent if it doesn't exist
agent = context.get_or_create_agent("job_description", system_prompt=system_generate_resume, job_description=data["content"])
except Exception as e:
logging.info(f"Attempt to create session type: {session_type} failed", e)
return JSONResponse({ "error": f"{session_type} is not recognized", "context": context.id }, status_code=404)
logger.info(f"Attempt to create agent type: {agent_type} failed", e)
return JSONResponse({ "error": f"{agent_type} is not recognized", "context": context.id }, status_code=404)
# Create a custom generator that ensures flushing
async def flush_generator():
async for message in self.generate_response(context=context, session=session, content=data["content"]):
async for message in self.generate_response(context=context, agent=agent, content=data["content"]):
# Convert to JSON and add newline
yield json.dumps(message) + "\n"
yield json.dumps(message.model_dump(mode='json')) + "\n"
# Save the history as its generated
self.save_context(context_id)
# Explicitly flush after each yield
@ -681,41 +671,43 @@ class WebServer:
}
)
except Exception as e:
logging.error(f"Error in post_chat_endpoint: {e}")
logger.error(f"Error in post_chat_endpoint: {e}")
return JSONResponse({"error": str(e)}, status_code=500)
@self.app.post("/api/context")
async def create_context():
context = self.create_context()
logging.info(f"Generated new session as {context.id}")
logger.info(f"Generated new agent as {context.id}")
return JSONResponse({ "id": context.id })
@self.app.get("/api/history/{context_id}/{session_type}")
async def get_history(context_id: str, session_type: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
@self.app.get("/api/history/{context_id}/{agent_type}")
async def get_history(context_id: str, agent_type: str, request: Request):
logger.info(f"{request.method} {request.url.path}")
try:
context = self.upsert_context(context_id)
session = context.get_session(session_type)
if not session:
logging.info(f"Session {session_type} not found. Returning empty history.")
agent = context.get_agent(agent_type)
if not agent:
logger.info(f"Agent {agent_type} not found. Returning empty history.")
return JSONResponse({ "messages": [] })
logging.info(f"History for {session_type} contains {len(session.conversation.messages)} entries.")
return session.conversation
logger.info(f"History for {agent_type} contains {len(agent.conversation.messages)} entries.")
return agent.conversation
except Exception as e:
logging.error(f"Error in get_history: {e}")
logger.error(f"get_history error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return JSONResponse({"error": str(e)}, status_code=404)
@self.app.get("/api/tools/{context_id}")
async def get_tools(context_id: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
logger.info(f"{request.method} {request.url.path}")
context = self.upsert_context(context_id)
return JSONResponse(context.tools)
@self.app.put("/api/tools/{context_id}")
async def put_tools(context_id: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
logger.info(f"{request.method} {request.url.path}")
if not is_valid_uuid(context_id):
logging.warning(f"Invalid context_id: {context_id}")
logger.warning(f"Invalid context_id: {context_id}")
return JSONResponse({"error": "Invalid context_id"}, status_code=400)
context = self.upsert_context(context_id)
try:
@ -732,17 +724,17 @@ class WebServer:
return JSONResponse({ "status": "error" }, 405)
@self.app.get("/api/context-status/{context_id}/{session_type}")
async def get_context_status(context_id, session_type: str, request: Request):
logging.info(f"{request.method} {request.url.path}")
@self.app.get("/api/context-status/{context_id}/{agent_type}")
async def get_context_status(context_id, agent_type: str, request: Request):
logger.info(f"{request.method} {request.url.path}")
if not is_valid_uuid(context_id):
logging.warning(f"Invalid context_id: {context_id}")
logger.warning(f"Invalid context_id: {context_id}")
return JSONResponse({"error": "Invalid context_id"}, status_code=400)
context = self.upsert_context(context_id)
session = context.get_session(session_type)
if not session:
agent = context.get_agent(agent_type)
if not agent:
return JSONResponse({"context_used": 0, "max_context": defines.max_context})
return JSONResponse({"context_used": session.context_tokens, "max_context": defines.max_context})
return JSONResponse({"context_used": agent.context_tokens, "max_context": defines.max_context})
@self.app.get("/api/health")
async def health_check():
@ -752,57 +744,80 @@ class WebServer:
async def serve_static(path: str):
full_path = os.path.join(defines.static_content, path)
if os.path.exists(full_path) and os.path.isfile(full_path):
logging.info(f"Serve static request for {full_path}")
logger.info(f"Serve static request for {full_path}")
return FileResponse(full_path)
logging.info(f"Serve index.html for {path}")
logger.info(f"Serve index.html for {path}")
return FileResponse(os.path.join(defines.static_content, "index.html"))
def save_context(self, session_id):
def save_context(self, context_id):
"""
Serialize a Python dictionary to a file in the sessions directory.
Serialize a Python dictionary to a file in the agents directory.
Args:
data: Dictionary containing the session data
session_id: UUID string for the context. If it doesn't exist, it is created
data: Dictionary containing the agent data
context_id: UUID string for the context. If it doesn't exist, it is created
Returns:
The session_id used for the file
The context_id used for the file
"""
context = self.upsert_context(session_id)
context = self.upsert_context(context_id)
# Create sessions directory if it doesn't exist
if not os.path.exists(defines.session_dir):
os.makedirs(defines.session_dir)
# Create agents directory if it doesn't exist
if not os.path.exists(defines.context_dir):
os.makedirs(defines.context_dir)
# Create the full file path
file_path = os.path.join(defines.session_dir, session_id)
file_path = os.path.join(defines.context_dir, context_id)
# Serialize the data to JSON and write to file
with open(file_path, "w") as f:
f.write(context.model_dump_json())
return session_id
return context_id
def load_context(self, session_id) -> Context:
def load_or_create_context(self, context_id) -> Context:
"""
Load a context from a file in the sessions directory.
Load a context from a file in the context directory or create a new one if it doesn't exist.
Args:
session_id: UUID string for the context. If it doesn't exist, a new context is created.
context_id: UUID string for the context.
Returns:
A Context object with the specified ID and default settings.
"""
if not self.file_watcher:
raise Exception("File watcher not initialized")
file_path = os.path.join(defines.session_dir, session_id)
file_path = os.path.join(defines.context_dir, context_id)
# Check if the file exists
if not os.path.exists(file_path):
self.contexts[session_id] = self.create_context(session_id)
logger.info(f"Context file {file_path} not found. Creating new context.")
self.contexts[context_id] = self.create_context(context_id)
else:
# Read and deserialize the data
with open(file_path, "r") as f:
self.contexts[session_id] = Context.model_validate_json(f.read())
content = f.read()
logger.info(f"Loading context from {file_path}, content length: {len(content)}")
try:
# Try parsing as JSON first to ensure valid JSON
import json
json_data = json.loads(content)
logger.info("JSON parsed successfully, attempting model validation")
return self.contexts[session_id]
# Now try Pydantic validation
self.contexts[context_id] = Context.model_validate_json(content)
self.contexts[context_id].file_watcher=self.file_watcher
logger.info(f"Successfully loaded context {context_id}")
except json.JSONDecodeError as e:
logger.error(f"Invalid JSON in file: {e}")
except Exception as e:
logger.error(f"Error validating context: {str(e)}")
import traceback
logger.error(traceback.format_exc())
# Fallback to creating a new context
self.contexts[context_id] = Context(id=context_id, file_watcher=self.file_watcher)
return self.contexts[context_id]
def create_context(self, context_id = None) -> Context:
"""
@ -812,18 +827,24 @@ class WebServer:
Returns:
A Context object with the specified ID and default settings.
"""
context = Context(id=context_id)
if not self.file_watcher:
raise Exception("File watcher not initialized")
logger.info(f"Creating new context with ID: {context_id}")
context = Context(id=context_id, file_watcher=self.file_watcher)
if os.path.exists(defines.resume_doc):
context.user_resume = open(defines.resume_doc, "r").read()
context.add_session(Chat(system_prompt = system_message))
# context.add_session(Resume(system_prompt = system_generate_resume))
# context.add_session(JobDescription(system_prompt = system_job_description))
# context.add_session(FactCheck(system_prompt = system_fact_check))
context.get_or_create_agent(
agent_type="chat",
system_prompt=system_message)
# context.add_agent(Resume(system_prompt = system_generate_resume))
# context.add_agent(JobDescription(system_prompt = system_job_description))
# context.add_agent(FactCheck(system_prompt = system_fact_check))
context.tools = default_tools(tools)
context.rags = rags.copy()
logging.info(f"{context.id} created and added to sessions.")
logger.info(f"{context.id} created and added to contexts.")
self.contexts[context.id] = context
self.save_context(context.id)
return context
@ -905,44 +926,42 @@ class WebServer:
"""
if not context_id:
logging.warning("No context ID provided. Creating a new context.")
logger.warning("No context ID provided. Creating a new context.")
return self.create_context()
if not is_valid_uuid(context_id):
logging.info(f"User requested invalid context_id: {context_id}")
raise ValueError("Invalid context_id: {context_id}")
if context_id in self.contexts:
return self.contexts[context_id]
logging.info(f"Context {context_id} not found. Creating new context.")
return self.load_context(context_id)
logger.info(f"Context {context_id} is not yet loaded.")
return self.load_or_create_context(context_id)
def generate_rag_results(self, context, content):
if not self.file_watcher:
raise Exception("File watcher not initialized")
results_found = False
if self.file_watcher:
for rag in context.rags:
if rag["enabled"] and rag["name"] == "JPK": # Only support JPK rag right now...
yield {"status": "processing", "message": f"Checking RAG context {rag['name']}..."}
chroma_results = self.file_watcher.find_similar(query=content, top_k=10)
if chroma_results:
results_found = True
chroma_embedding = np.array(chroma_results["query_embedding"]).flatten() # Ensure correct shape
print(f"Chroma embedding shape: {chroma_embedding.shape}")
for rag in context.rags:
if rag["enabled"] and rag["name"] == "JPK": # Only support JPK rag right now...
yield {"status": "processing", "message": f"Checking RAG context {rag['name']}..."}
chroma_results = self.file_watcher.find_similar(query=content, top_k=10)
if chroma_results:
results_found = True
chroma_embedding = np.array(chroma_results["query_embedding"]).flatten() # Ensure correct shape
logger.info(f"Chroma embedding shape: {chroma_embedding.shape}")
umap_2d = self.file_watcher.umap_model_2d.transform([chroma_embedding])[0].tolist()
print(f"UMAP 2D output: {umap_2d}, length: {len(umap_2d)}") # Debug output
umap_2d = self.file_watcher.umap_model_2d.transform([chroma_embedding])[0].tolist()
logger.info(f"UMAP 2D output: {umap_2d}, length: {len(umap_2d)}") # Debug output
umap_3d = self.file_watcher.umap_model_3d.transform([chroma_embedding])[0].tolist()
print(f"UMAP 3D output: {umap_3d}, length: {len(umap_3d)}") # Debug output
umap_3d = self.file_watcher.umap_model_3d.transform([chroma_embedding])[0].tolist()
logger.info(f"UMAP 3D output: {umap_3d}, length: {len(umap_3d)}") # Debug output
yield {
**chroma_results,
"name": rag["name"],
"umap_embedding_2d": umap_2d,
"umap_embedding_3d": umap_3d
}
yield {
**chroma_results,
"name": rag["name"],
"umap_embedding_2d": umap_2d,
"umap_embedding_3d": umap_3d
}
if not results_found:
yield {"status": "complete", "message": "No RAG context found"}
@ -956,35 +975,51 @@ class WebServer:
else:
yield {"status": "complete", "message": "RAG processing complete"}
# session_type: chat
# * Q&A
#
# session_type: job_description
# * First message sets Job Description and generates Resume
# * Has content (Job Description)
# * Then Q&A of Job Description
#
# session_type: resume
# * First message sets Resume and generates Fact Check
# * Has no content
# * Then Q&A of Resume
#
# Fact Check:
# * First message sets Fact Check and is Q&A
# * Has content
# * Then Q&A of Fact Check
async def generate_response(self, context : Context, session : Session, content : str):
async def generate_response(self, context : Context, agent : Agent, content : str) -> AsyncGenerator[Message, None]:
if not self.file_watcher:
raise Exception("File watcher not initialized")
agent_type = agent.get_agent_type()
logger.info(f"generate_response: {agent_type}")
if agent_type == "chat":
message = Message(prompt=content)
async for message in agent.prepare_message(message):
# logger.info(f"{agent_type}.prepare_message: {value.status} - {value.response}")
if message.status == "error":
yield message
return
if message.status != "done":
yield message
async for message in agent.process_message(self.llm, self.model, message):
# logger.info(f"{agent_type}.process_message: {value.status} - {value.response}")
if message.status == "error":
yield message
return
if message.status != "done":
yield message
# async for value in agent.generate_llm_response(message):
# logger.info(f"{agent_type}.generate_llm_response: {value.status} - {value.response}")
# if value.status != "done":
# yield value
# if value.status == "error":
# message.status = "error"
# message.response = value.response
# yield message
# return
logger.info("TODO: There is more to do...")
yield message
return
return
if self.processing:
logging.info("TODO: Implement delay queing; busy for same session, otherwise return queue size and estimated wait time")
logger.info("TODO: Implement delay queing; busy for same agent, otherwise return queue size and estimated wait time")
yield {"status": "error", "message": "Busy processing another request."}
return
self.processing = True
conversation : Conversation = session.conversation
conversation : Conversation = agent.conversation
message = Message(prompt=content)
del content # Prevent accidental use of content
@ -999,36 +1034,36 @@ class WebServer:
enable_rag = False
# RAG is disabled when asking questions about the resume
if session.session_type == "resume":
if agent.get_agent_type() == "resume":
enable_rag = False
# The first time through each session session_type a content_seed may be set for
# future chat sessions; use it once, then clear it
message.preamble = session.get_and_reset_content_seed()
system_prompt = session.system_prompt
# The first time through each agent agent_type a content_seed may be set for
# future chat agents; use it once, then clear it
message.preamble = agent.get_and_reset_content_seed()
system_prompt = agent.system_prompt
# After the first time a particular session session_type is used, it is handled as a chat.
# The number of messages indicating the session is ready for chat varies based on
# the session_type of session
process_type = session.session_type
# After the first time a particular agent agent_type is used, it is handled as a chat.
# The number of messages indicating the agent is ready for chat varies based on
# the agent_type of agent
process_type = agent.get_agent_type()
match process_type:
case "job_description":
logging.info(f"job_description user_history len: {len(conversation.messages)}")
logger.info(f"job_description user_history len: {len(conversation.messages)}")
if len(conversation.messages) >= 2: # USER, ASSISTANT
process_type = "chat"
case "resume":
logging.info(f"resume user_history len: {len(conversation.messages)}")
logger.info(f"resume user_history len: {len(conversation.messages)}")
if len(conversation.messages) >= 3: # USER, ASSISTANT, FACT_CHECK
process_type = "chat"
case "fact_check":
process_type = "chat" # Fact Check is always a chat session
process_type = "chat" # Fact Check is always a chat agent
match process_type:
# Normal chat interactions with context history
case "chat":
if not message.prompt:
yield {"status": "error", "message": "No query provided for chat."}
logging.info(f"user_history len: {len(conversation.messages)}")
logger.info(f"user_history len: {len(conversation.messages)}")
self.processing = False
return
@ -1071,7 +1106,7 @@ class WebServer:
Use that information to respond to:"""
# Use the mode specific system_prompt instead of 'chat'
system_prompt = session.system_prompt
system_prompt = agent.system_prompt
# On first entry, a single job_description is provided ("user")
# Generate a resume to append to RESUME history
@ -1110,10 +1145,10 @@ Use that information to respond to:"""
<|job_description|>
{message.prompt}
"""
tmp = context.get_session("job_description")
tmp = context.get_agent("job_description")
if not tmp:
raise Exception(f"Job description session not found.")
# Set the content seed for the job_description session
raise Exception(f"Job description agent not found.")
# Set the content seed for the job_description agent
tmp.set_content_seed(message.preamble + "<|question|>\nUse the above information to respond to this prompt: ")
message.preamble += f"""
@ -1126,7 +1161,7 @@ Use to the above information to respond to this prompt:
"""
# For all future calls to job_description, use the system_job_description
session.system_prompt = system_job_description
agent.system_prompt = system_job_description
# Seed the history for job_description
stuffingMessage = Message(prompt=message.prompt)
@ -1137,21 +1172,21 @@ Use to the above information to respond to this prompt:
message.add_action("generate_resume")
logging.info("TODO: Convert these to generators, eg generate_resume() and then manually add results into session'resume'")
logging.info("TODO: For subsequent runs, have the Session handler generate the follow up prompts so they can have correct context preamble")
logger.info("TODO: Convert these to generators, eg generate_resume() and then manually add results into agent'resume'")
logger.info("TODO: For subsequent runs, have the Agent handler generate the follow up prompts so they can have correct context preamble")
# Switch to resume session for LLM responses
# Switch to resume agent for LLM responses
# message.metadata["origin"] = "resume"
# session = context.get_or_create_session("resume")
# system_prompt = session.system_prompt
# llm_history = session.llm_history = []
# user_history = session.user_history = []
# agent = context.get_or_create_agent("resume")
# system_prompt = agent.system_prompt
# llm_history = agent.llm_history = []
# user_history = agent.user_history = []
# Ignore the passed in content and invoke Fact Check
case "resume":
if len(context.get_or_create_session("resume").conversation.messages) < 2: # USER, **ASSISTANT**
if len(context.get_or_create_agent("resume").conversation.messages) < 2: # USER, **ASSISTANT**
raise Exception(f"No resume found in user history.")
resume = context.get_or_create_session("resume").conversation.messages[1]
resume = context.get_or_create_agent("resume").conversation.messages[1]
# Generate RAG content if enabled, based on the content
rag_context = ""
@ -1196,7 +1231,7 @@ Use to the above information to respond to this prompt:
<|question|>
"""
context.get_or_create_session("resume").set_content_seed(f"""
context.get_or_create_agent("resume").set_content_seed(f"""
<|resume|>
{resume["content"]}
@ -1218,29 +1253,29 @@ Use the above <|resume|> and <|job_description|> to answer this query:
stuffingMessage.metadata["origin"] = "resume"
stuffingMessage.metadata["display"] = "hide"
stuffingMessage.actions = [ "fact_check" ]
logging.info("TODO: Switch this to use actions to keep the UI from showingit")
logger.info("TODO: Switch this to use actions to keep the UI from showingit")
conversation.add_message(stuffingMessage)
# For all future calls to job_description, use the system_job_description
logging.info("TODO: Create a system_resume_QA prompt to use for the resume session")
session.system_prompt = system_prompt
logger.info("TODO: Create a system_resume_QA prompt to use for the resume agent")
agent.system_prompt = system_prompt
# Switch to fact_check session for LLM responses
# Switch to fact_check agent for LLM responses
message.metadata["origin"] = "fact_check"
session = context.get_or_create_session("fact_check", system_prompt=system_fact_check)
agent = context.get_or_create_agent("fact_check", system_prompt=system_fact_check)
llm_history = session.llm_history = []
user_history = session.user_history = []
llm_history = agent.llm_history = []
user_history = agent.user_history = []
case _:
raise Exception(f"Invalid chat session_type: {session_type}")
raise Exception(f"Invalid chat agent_type: {agent_type}")
conversation.add_message(message)
# llm_history.append({"role": "user", "content": message.preamble + content})
# user_history.append({"role": "user", "content": content, "origin": message.metadata["origin"]})
# message.metadata["full_query"] = llm_history[-1]["content"]
# Uses cached system_prompt as session.system_prompt may have been updated for follow up questions
# Uses cached system_prompt as agent.system_prompt may have been updated for follow up questions
messages = create_system_message(system_prompt)
if context.message_history_length:
to_add = conversation.messages[-context.message_history_length:]
@ -1272,12 +1307,12 @@ Use the above <|resume|> and <|job_description|> to answer this query:
{message.prompt}"""
# Estimate token length of new messages
ctx_size = self.get_optimal_ctx_size(context.get_or_create_session(process_type).context_tokens, messages=message.prompt)
ctx_size = self.get_optimal_ctx_size(context.get_or_create_agent(process_type).context_tokens, messages=message.prompt)
if len(conversation.messages) > 2:
processing_message = f"Processing {'RAG augmented ' if enable_rag else ''}query..."
else:
match session.session_type:
match agent.get_agent_type():
case "job_description":
processing_message = f"Generating {'RAG augmented ' if enable_rag else ''}resume..."
case "resume":
@ -1294,7 +1329,7 @@ Use the above <|resume|> and <|job_description|> to answer this query:
else:
response = self.llm.chat(model=self.model, messages=messages, options={ "num_ctx": ctx_size })
except Exception as e:
logging.exception({ "model": self.model, "error": str(e) })
logger.exception({ "model": self.model, "error": str(e) })
yield {"status": "error", "message": f"An error occurred communicating with LLM"}
self.processing = False
return
@ -1303,7 +1338,7 @@ Use the above <|resume|> and <|job_description|> to answer this query:
message.metadata["eval_duration"] += response["eval_duration"]
message.metadata["prompt_eval_count"] += response["prompt_eval_count"]
message.metadata["prompt_eval_duration"] += response["prompt_eval_duration"]
session.context_tokens = response["prompt_eval_count"] + response["eval_count"]
agent.context_tokens = response["prompt_eval_count"] + response["eval_count"]
tools_used = []
@ -1347,7 +1382,7 @@ Use the above <|resume|> and <|job_description|> to answer this query:
message.metadata["tools"] = tools_used
# Estimate token length of new messages
ctx_size = self.get_optimal_ctx_size(session.context_tokens, messages=messages[pre_add_index:])
ctx_size = self.get_optimal_ctx_size(agent.context_tokens, messages=messages[pre_add_index:])
yield {"status": "processing", "message": "Generating final response...", "num_ctx": ctx_size }
# Decrease creativity when processing tool call requests
response = self.llm.chat(model=self.model, messages=messages, stream=False, options={ "num_ctx": ctx_size }) #, "temperature": 0.5 })
@ -1355,11 +1390,11 @@ Use the above <|resume|> and <|job_description|> to answer this query:
message.metadata["eval_duration"] += response["eval_duration"]
message.metadata["prompt_eval_count"] += response["prompt_eval_count"]
message.metadata["prompt_eval_duration"] += response["prompt_eval_duration"]
session.context_tokens = response["prompt_eval_count"] + response["eval_count"]
agent.context_tokens = response["prompt_eval_count"] + response["eval_count"]
reply = response["message"]["content"]
message.response = reply
message.metadata["origin"] = session.session_type
message.metadata["origin"] = agent.get_agent_type()
# final_message = {"role": "assistant", "content": reply }
# # history is provided to the LLM and should not have additional metadata
@ -1379,7 +1414,7 @@ Use the above <|resume|> and <|job_description|> to answer this query:
}
# except Exception as e:
# logging.exception({ "model": self.model, "origin": session_type, "content": content, "error": str(e) })
# logger.exception({ "model": self.model, "origin": agent_type, "content": content, "error": str(e) })
# yield {"status": "error", "message": f"An error occurred: {str(e)}"}
# finally:
@ -1390,7 +1425,7 @@ Use the above <|resume|> and <|job_description|> to answer this query:
def run(self, host="0.0.0.0", port=WEB_PORT, **kwargs):
try:
if self.ssl_enabled:
logging.info(f"Starting web server at https://{host}:{port}")
logger.info(f"Starting web server at https://{host}:{port}")
uvicorn.run(
self.app,
host=host,
@ -1400,7 +1435,7 @@ Use the above <|resume|> and <|job_description|> to answer this query:
ssl_certfile=defines.cert_path
)
else:
logging.info(f"Starting web server at http://{host}:{port}")
logger.info(f"Starting web server at http://{host}:{port}")
uvicorn.run(
self.app,
host=host,
@ -1423,7 +1458,7 @@ def main():
args = parse_args()
# Setup logging based on the provided level
setup_logging(args.level)
logger.setLevel(args.level.upper())
warnings.filterwarnings(
"ignore",

View File

@ -1,10 +1,67 @@
# Import defines to make `utils.defines` accessible
from typing import Optional, Type
from . import defines
from . rag import ChromaDBFileWatcher, start_file_watcher
from . message import Message
from . conversation import Conversation
from . context import Context
from . import agents
from . setup_logging import setup_logging
# Import rest as `utils.*` accessible
from .rag import ChromaDBFileWatcher, start_file_watcher
from .agents import Agent, __all__ as agents_all
from .message import Message
from .conversation import Conversation
from .session import Session, Chat, Resume, JobDescription, FactCheck
from .context import Context
__all__ = [
'Agent',
'Context',
'Conversation',
'Message',
'ChromaDBFileWatcher',
'start_file_watcher'
'logger',
] + agents_all
# Resolve circular dependencies by rebuilding models
# Call model_rebuild() on Agent and Context
Agent.model_rebuild()
Context.model_rebuild()
import importlib
from pydantic import BaseModel
from typing import Type
# Assuming class_registry is available from agents/__init__.py
from .agents import class_registry, AnyAgent
logger = setup_logging(level=defines.logging_level)
def rebuild_models():
for class_name, (module_name, _) in class_registry.items():
try:
module = importlib.import_module(module_name)
cls = getattr(module, class_name, None)
logger.debug(f"Checking: {class_name} in module {module_name}")
logger.debug(f" cls: {True if cls else False}")
logger.debug(f" isinstance(cls, type): {isinstance(cls, type)}")
logger.debug(f" issubclass(cls, BaseModel): {issubclass(cls, BaseModel) if cls else False}")
logger.debug(f" issubclass(cls, AnyAgent): {issubclass(cls, AnyAgent) if cls else False}")
logger.debug(f" cls is not AnyAgent: {cls is not AnyAgent if cls else True}")
if (
cls
and isinstance(cls, type)
and issubclass(cls, BaseModel)
and issubclass(cls, AnyAgent)
and cls is not AnyAgent
):
logger.debug(f"Rebuilding {class_name} from {module_name}")
from . agents import Agent
from . context import Context
cls.model_rebuild()
except ImportError as e:
logger.error(f"Failed to import module {module_name}: {e}")
except Exception as e:
logger.error(f"Error processing {class_name} in {module_name}: {e}")
# Call this after all modules are imported
rebuild_models()

View File

@ -0,0 +1,43 @@
from __future__ import annotations
import importlib
import pathlib
import inspect
import logging
from typing import TypeAlias, Dict, Tuple
from pydantic import BaseModel
from . base import Agent
# Type alias for Agent or any subclass
AnyAgent: TypeAlias = Agent # BaseModel covers Agent and subclasses
package_dir = pathlib.Path(__file__).parent
package_name = __name__
__all__ = []
class_registry: Dict[str, Tuple[str, str]] = {} # Maps class_name to (module_name, class_name)
for path in package_dir.glob("*.py"):
if path.name in ("__init__.py", "base.py") or path.name.startswith("_"):
continue
module_name = path.stem
full_module_name = f"{package_name}.{module_name}"
try:
module = importlib.import_module(full_module_name)
# Find all Agent subclasses in the module
for name, obj in inspect.getmembers(module, inspect.isclass):
if (
issubclass(obj, AnyAgent)
and obj is not AnyAgent
and obj is not Agent
and name not in class_registry
):
class_registry[name] = (full_module_name, name)
globals()[name] = obj
logging.info(f"Adding agent: {name} from {full_module_name}")
__all__.append(name)
except ImportError as e:
logging.error(f"Failed to import module {full_module_name}: {e}")
__all__.append("AnyAgent")

258
src/utils/agents/base.py Normal file
View File

@ -0,0 +1,258 @@
from __future__ import annotations
from pydantic import BaseModel, model_validator, PrivateAttr, Field
from typing import Literal, TypeAlias, get_args, List, Generator, Iterator, AsyncGenerator, TYPE_CHECKING, Optional, ClassVar, ForwardRef, Any
from abc import ABC, abstractmethod
from typing_extensions import Annotated
from .. setup_logging import setup_logging
logger = setup_logging()
# Only import Context for type checking
if TYPE_CHECKING:
from .. context import Context
from .types import registry
from .. conversation import Conversation
from .. message import Message
class Agent(BaseModel, ABC):
"""
Base class for all agent types.
This class defines the common attributes and methods for all agent types.
"""
# Agent management with pydantic
agent_type: Literal["base"] = "base"
_agent_type: ClassVar[str] = agent_type # Add this for registration
# Agent properties
system_prompt: str # Mandatory
conversation: Conversation = Conversation()
context_tokens: int = 0
context: Optional[Context] = Field(default=None, exclude=True) # Avoid circular reference, require as param, and prevent serialization
_content_seed: str = PrivateAttr(default="")
# Class and pydantic model management
def __init_subclass__(cls, **kwargs):
"""Auto-register subclasses"""
super().__init_subclass__(**kwargs)
# Register this class if it has an agent_type
if hasattr(cls, 'agent_type') and cls.agent_type != Agent._agent_type:
registry.register(cls.agent_type, cls)
def model_dump(self, *args, **kwargs):
# Ensure context is always excluded, even with exclude_unset=True
kwargs.setdefault("exclude", set())
if isinstance(kwargs["exclude"], set):
kwargs["exclude"].add("context")
elif isinstance(kwargs["exclude"], dict):
kwargs["exclude"]["context"] = True
return super().model_dump(*args, **kwargs)
@classmethod
def valid_agent_types(cls) -> set[str]:
"""Return the set of valid agent_type values."""
return set(get_args(cls.__annotations__["agent_type"]))
def set_context(self, context):
object.__setattr__(self, "context", context)
# Agent methods
def get_agent_type(self):
return self._agent_type
async def prepare_message(self, message:Message) -> AsyncGenerator[Message, None]:
"""
Prepare message with context information in message.preamble
"""
# Generate RAG content if enabled, based on the content
rag_context = ""
if not message.disable_rag:
# Gather RAG results, yielding each result
# as it becomes available
for value in self.context.generate_rag_results(message):
logger.info(f"RAG: {value.status} - {value.response}")
if value.status != "done":
yield value
if value.status == "error":
message.status = "error"
message.response = value.response
yield message
return
if message.metadata["rag"]:
for rag_collection in message.metadata["rag"]:
for doc in rag_collection["documents"]:
rag_context += f"{doc}\n"
if rag_context:
message["context"] = rag_context
if self.context.user_resume:
message["resume"] = self.content.user_resume
if message.preamble:
preamble_types = [f"<|{p}|>" for p in message.preamble.keys()]
preamble_types_AND = " and ".join(preamble_types)
preamble_types_OR = " or ".join(preamble_types)
message.preamble["rules"] = f"""\
- Answer the question based on the information provided in the {preamble_types_AND} sections by incorporate it seamlessly and refer to it using natural language instead of mentioning {preamble_or_types} or quoting it directly.
- If there is no information in these sections, answer based on your knowledge.
- Avoid phrases like 'According to the {preamble_types[0]}' or similar references to the {preamble_types_OR}.
"""
message.preamble["question"] = "Use that information to respond to:"
else:
message.preamble["question"] = "Respond to:"
message.system_prompt = self.system_prompt
message.status = "done"
yield message
return
async def generate_llm_response(self, message: Message) -> AsyncGenerator[Message, None]:
if self.context.processing:
logger.info("TODO: Implement delay queing; busy for same agent, otherwise return queue size and estimated wait time")
message.status = "error"
message.response = "Busy processing another request."
yield message
return
self.context.processing = True
messages = []
for value in self.llm.chat(
model=self.model,
messages=messages,
#tools=llm_tools(context.tools) if message.enable_tools else None,
options={ "num_ctx": message.ctx_size }
):
logger.info(f"LLM: {value.status} - {value.response}")
if value.status != "done":
message.status = value.status
message.response = value.response
yield message
if value.status == "error":
return
response = value
message.metadata["eval_count"] += response["eval_count"]
message.metadata["eval_duration"] += response["eval_duration"]
message.metadata["prompt_eval_count"] += response["prompt_eval_count"]
message.metadata["prompt_eval_duration"] += response["prompt_eval_duration"]
agent.context_tokens = response["prompt_eval_count"] + response["eval_count"]
tools_used = []
yield {"status": "processing", "message": "Initial response received..."}
if "tool_calls" in response.get("message", {}):
yield {"status": "processing", "message": "Processing tool calls..."}
tool_message = response["message"]
tool_result = None
# Process all yielded items from the handler
async for item in self.handle_tool_calls(tool_message):
if isinstance(item, tuple) and len(item) == 2:
# This is the final result tuple (tool_result, tools_used)
tool_result, tools_used = item
else:
# This is a status update, forward it
yield item
message_dict = {
"role": tool_message.get("role", "assistant"),
"content": tool_message.get("content", "")
}
if "tool_calls" in tool_message:
message_dict["tool_calls"] = [
{"function": {"name": tc["function"]["name"], "arguments": tc["function"]["arguments"]}}
for tc in tool_message["tool_calls"]
]
pre_add_index = len(messages)
messages.append(message_dict)
if isinstance(tool_result, list):
messages.extend(tool_result)
else:
if tool_result:
messages.append(tool_result)
message.metadata["tools"] = tools_used
# Estimate token length of new messages
ctx_size = self.get_optimal_ctx_size(agent.context_tokens, messages=messages[pre_add_index:])
yield {"status": "processing", "message": "Generating final response...", "num_ctx": ctx_size }
# Decrease creativity when processing tool call requests
response = self.llm.chat(model=self.model, messages=messages, stream=False, options={ "num_ctx": ctx_size }) #, "temperature": 0.5 })
message.metadata["eval_count"] += response["eval_count"]
message.metadata["eval_duration"] += response["eval_duration"]
message.metadata["prompt_eval_count"] += response["prompt_eval_count"]
message.metadata["prompt_eval_duration"] += response["prompt_eval_duration"]
agent.context_tokens = response["prompt_eval_count"] + response["eval_count"]
reply = response["message"]["content"]
message.response = reply
message.metadata["origin"] = agent.agent_type
# final_message = {"role": "assistant", "content": reply }
# # history is provided to the LLM and should not have additional metadata
# llm_history.append(final_message)
# user_history is provided to the REST API and does not include CONTEXT
# It does include metadata
# final_message["metadata"] = message.metadata
# user_history.append({**final_message, "origin": message.metadata["origin"]})
# Return the REST API with metadata
yield {
"status": "done",
"message": {
**message.model_dump(mode='json'),
}
}
self.context.processing = False
return
async def process_message(self, llm: Any, model: str, message:Message) -> AsyncGenerator[Message, None]:
message.full_content = ""
for i, p in enumerate(message.preamble.keys()):
message.full_content += '' if i == 0 else '\n\n' + f"<|{p}|>{message.preamble[p].strip()}\n"
# Estimate token length of new messages
message.ctx_size = self.context.get_optimal_ctx_size(self.context_tokens, messages=message.full_content)
message.response = f"Processing {'RAG augmented ' if message.metadata['rag'] else ''}query..."
message.status = "thinking"
yield message
for value in self.generate_llm_response(message):
logger.info(f"LLM: {value.status} - {value.response}")
if value.status != "done":
yield value
if value.status == "error":
return
def get_and_reset_content_seed(self):
tmp = self._content_seed
self._content_seed = ""
return tmp
def set_content_seed(self, content: str) -> None:
"""Set the content seed for the agent."""
self._content_seed = content
def get_content_seed(self) -> str:
"""Get the content seed for the agent."""
return self._content_seed
# Register the base agent
registry.register(Agent._agent_type, Agent)

246
src/utils/agents/chat.py Normal file
View File

@ -0,0 +1,246 @@
from __future__ import annotations
from pydantic import BaseModel, model_validator, PrivateAttr
from typing import Literal, TypeAlias, get_args, List, Generator, Iterator, AsyncGenerator, TYPE_CHECKING, Optional, ClassVar, Any
from typing_extensions import Annotated
from abc import ABC, abstractmethod
from typing_extensions import Annotated
import logging
from .base import Agent, registry
from .. conversation import Conversation
from .. message import Message
from .. import defines
class Chat(Agent, ABC):
"""
Base class for all agent types.
This class defines the common attributes and methods for all agent types.
"""
agent_type: Literal["chat"] = "chat"
_agent_type: ClassVar[str] = agent_type # Add this for registration
async def prepare_message(self, message:Message) -> AsyncGenerator[Message, None]:
"""
Prepare message with context information in message.preamble
"""
if not self.context:
raise ValueError("Context is not set for this agent.")
# Generate RAG content if enabled, based on the content
rag_context = ""
if not message.disable_rag:
# Gather RAG results, yielding each result
# as it becomes available
for message in self.context.generate_rag_results(message):
logging.info(f"RAG: {message.status} - {message.response}")
if message.status == "error":
yield message
return
if message.status != "done":
yield message
if "rag" in message.metadata and message.metadata["rag"]:
for rag in message.metadata["rag"]:
for doc in rag["documents"]:
rag_context += f"{doc}\n"
message.preamble = {}
if rag_context:
message.preamble["context"] = rag_context
if self.context.user_resume:
message.preamble["resume"] = self.context.user_resume
if message.preamble:
preamble_types = [f"<|{p}|>" for p in message.preamble.keys()]
preamble_types_AND = " and ".join(preamble_types)
preamble_types_OR = " or ".join(preamble_types)
message.preamble["rules"] = f"""\
- Answer the question based on the information provided in the {preamble_types_AND} sections by incorporate it seamlessly and refer to it using natural language instead of mentioning {preamble_types_OR} or quoting it directly.
- If there is no information in these sections, answer based on your knowledge.
- Avoid phrases like 'According to the {preamble_types[0]}' or similar references to the {preamble_types_OR}.
"""
message.preamble["question"] = "Use that information to respond to:"
else:
message.preamble["question"] = "Respond to:"
message.system_prompt = self.system_prompt
message.status = "done"
yield message
return
async def generate_llm_response(self, llm: Any, model: str, message: Message) -> AsyncGenerator[Message, None]:
if not self.context:
raise ValueError("Context is not set for this agent.")
if self.context.processing:
logging.info("TODO: Implement delay queing; busy for same agent, otherwise return queue size and estimated wait time")
message.status = "error"
message.response = "Busy processing another request."
yield message
return
self.context.processing = True
self.conversation.add_message(message)
messages = [
item for m in self.conversation.messages
for item in [
{"role": "user", "content": m.prompt},
{"role": "assistant", "content": m.response}
]
]
for value in llm.chat(
model=model,
messages=messages,
#tools=llm_tools(context.tools) if message.enable_tools else None,
options={ "num_ctx": message.metadata["ctx_size"] if message.metadata["ctx_size"] else defines.max_context },
stream=True,
):
logging.info(f"LLM: {'done' if value.done else 'thinking'} - {value.message.content}")
message.response += value.message.content
yield message
if value.done:
response = value
message.status = "done"
if not response:
message.status = "error"
message.response = "No response from LLM."
yield message
self.context.processing = False
return
message.metadata["eval_count"] += response["eval_count"]
message.metadata["eval_duration"] += response["eval_duration"]
message.metadata["prompt_eval_count"] += response["prompt_eval_count"]
message.metadata["prompt_eval_duration"] += response["prompt_eval_duration"]
self.context_tokens = response["prompt_eval_count"] + response["eval_count"]
yield message
self.context.processing = False
return
tools_used = []
if "tool_calls" in response.get("message", {}):
message.status = "thinking"
message.response = "Processing tool calls..."
tool_message = response["message"]
tool_result = None
# Process all yielded items from the handler
async for value in self.handle_tool_calls(tool_message):
if isinstance(value, tuple) and len(value) == 2:
# This is the final result tuple (tool_result, tools_used)
tool_result, tools_used = value
else:
# This is a status update, forward it
yield value
message_dict = {
"role": tool_message.get("role", "assistant"),
"content": tool_message.get("content", "")
}
if "tool_calls" in tool_message:
message_dict["tool_calls"] = [
{"function": {"name": tc["function"]["name"], "arguments": tc["function"]["arguments"]}}
for tc in tool_message["tool_calls"]
]
pre_add_index = len(messages)
messages.append(message_dict)
if isinstance(tool_result, list):
messages.extend(tool_result)
else:
if tool_result:
messages.append(tool_result)
message.metadata["tools"] = tools_used
# Estimate token length of new messages
ctx_size = self.get_optimal_ctx_size(agent.context_tokens, messages=messages[pre_add_index:])
yield {"status": "processing", "message": "Generating final response...", "num_ctx": ctx_size }
# Decrease creativity when processing tool call requests
response = self.llm.chat(model=self.model, messages=messages, stream=False, options={ "num_ctx": ctx_size }) #, "temperature": 0.5 })
message.metadata["eval_count"] += response["eval_count"]
message.metadata["eval_duration"] += response["eval_duration"]
message.metadata["prompt_eval_count"] += response["prompt_eval_count"]
message.metadata["prompt_eval_duration"] += response["prompt_eval_duration"]
agent.context_tokens = response["prompt_eval_count"] + response["eval_count"]
reply = response["message"]["content"]
message.response = reply
message.metadata["origin"] = agent.agent_type
# final_message = {"role": "assistant", "content": reply }
# # history is provided to the LLM and should not have additional metadata
# llm_history.append(final_message)
# user_history is provided to the REST API and does not include CONTEXT
# It does include metadata
# final_message["metadata"] = message.metadata
# user_history.append({**final_message, "origin": message.metadata["origin"]})
# Return the REST API with metadata
yield {
"status": "done",
"message": {
**message.model_dump(mode='json'),
}
}
self.context.processing = False
return
async def process_message(self, llm: Any, model: str, message:Message) -> AsyncGenerator[Message, None]:
if not self.context:
raise ValueError("Context is not set for this agent.")
message.full_content = f"<|system|>{self.system_prompt.strip()}\n"
for i, p in enumerate(message.preamble.keys()):
message.full_content += f"\n<|{p}|>\n{message.preamble[p].strip()}\n"
message.full_content += f"{message.prompt}"
# Estimate token length of new messages
message.metadata["ctx_size"] = self.context.get_optimal_ctx_size(self.context_tokens, messages=message.full_content)
message.response = f"Processing {'RAG augmented ' if message.metadata['rag'] else ''}query..."
message.status = "thinking"
yield message
async for message in self.generate_llm_response(llm, model, message):
logging.info(f"LLM: {message.status} - {message.response}")
if message.status == "error":
return
if message.status != "done":
yield message
yield message
return
def get_and_reset_content_seed(self):
tmp = self._content_seed
self._content_seed = ""
return tmp
def set_content_seed(self, content: str) -> None:
"""Set the content seed for the agent."""
self._content_seed = content
def get_content_seed(self) -> str:
"""Get the content seed for the agent."""
return self._content_seed
@classmethod
def valid_agent_types(cls) -> set[str]:
"""Return the set of valid agent_type values."""
return set(get_args(cls.__annotations__["agent_type"]))
# Register the base agent
registry.register(Chat._agent_type, Chat)

View File

@ -0,0 +1,24 @@
from pydantic import BaseModel, Field, model_validator, PrivateAttr
from typing import Literal, TypeAlias, get_args, List, Generator, Iterator, AsyncGenerator, TYPE_CHECKING, Optional, ClassVar
from typing_extensions import Annotated
from abc import ABC, abstractmethod
from typing_extensions import Annotated
import logging
from .base import Agent, registry
from .. conversation import Conversation
from .. message import Message
class FactCheck(Agent):
agent_type: Literal["fact_check"] = "fact_check"
_agent_type: ClassVar[str] = agent_type # Add this for registration
facts: str = ""
@model_validator(mode="after")
def validate_facts(self):
if not self.facts.strip():
raise ValueError("Facts cannot be empty")
return self
# Register the base agent
registry.register(FactCheck._agent_type, FactCheck)

View File

@ -0,0 +1,24 @@
from pydantic import BaseModel, Field, model_validator, PrivateAttr
from typing import Literal, TypeAlias, get_args, List, Generator, Iterator, AsyncGenerator, TYPE_CHECKING, Optional, ClassVar
from typing_extensions import Annotated
from abc import ABC, abstractmethod
from typing_extensions import Annotated
import logging
from .base import Agent, registry
from .. conversation import Conversation
from .. message import Message
class JobDescription(Agent):
agent_type: Literal["job_description"] = "job_description"
_agent_type: ClassVar[str] = agent_type # Add this for registration
job_description: str = ""
@model_validator(mode="after")
def validate_job_description(self):
if not self.job_description.strip():
raise ValueError("Job description cannot be empty")
return self
# Register the base agent
registry.register(JobDescription._agent_type, JobDescription)

View File

@ -0,0 +1,32 @@
from pydantic import BaseModel, Field, model_validator, PrivateAttr
from typing import Literal, TypeAlias, get_args, List, Generator, Iterator, AsyncGenerator, TYPE_CHECKING, Optional, ClassVar
from typing_extensions import Annotated
from abc import ABC, abstractmethod
from typing_extensions import Annotated
import logging
from .base import Agent, registry
from .. conversation import Conversation
from .. message import Message
class Resume(Agent):
agent_type: Literal["resume"] = "resume"
_agent_type: ClassVar[str] = agent_type # Add this for registration
resume: str = ""
@model_validator(mode="after")
def validate_resume(self):
if not self.resume.strip():
raise ValueError("Resume content cannot be empty")
return self
def get_resume(self) -> str:
"""Get the resume content."""
return self.resume
def set_resume(self, resume: str) -> None:
"""Set the resume content."""
self.resume = resume
# Register the base agent
registry.register(Resume._agent_type, Resume)

38
src/utils/agents/types.py Normal file
View File

@ -0,0 +1,38 @@
from __future__ import annotations
from typing import List, Dict, Any, Union, ForwardRef, TypeVar, Optional, TYPE_CHECKING, Type, ClassVar, Literal
from typing_extensions import Annotated
from pydantic import Field, BaseModel
from abc import ABC, abstractmethod
# Forward references
AgentRef = ForwardRef('Agent')
ContextRef = ForwardRef('Context')
# We'll use a registry pattern rather than hardcoded strings
class AgentRegistry:
"""Registry for agent types and classes"""
_registry: Dict[str, Type] = {}
@classmethod
def register(cls, agent_type: str, agent_class: Type) -> Type:
"""Register an agent class with its type"""
cls._registry[agent_type] = agent_class
return agent_class
@classmethod
def get_class(cls, agent_type: str) -> Optional[Type]:
"""Get the class for a given agent type"""
return cls._registry.get(agent_type)
@classmethod
def get_types(cls) -> List[str]:
"""Get all registered agent types"""
return list(cls._registry.keys())
@classmethod
def get_classes(cls) -> Dict[str, Type]:
"""Get all registered agent classes"""
return cls._registry.copy()
# Create a singleton instance
registry = AgentRegistry()

View File

@ -1,19 +1,32 @@
from pydantic import BaseModel, Field, model_validator
from __future__ import annotations
from pydantic import BaseModel, Field, model_validator, ValidationError
from uuid import uuid4
from typing import List, Optional
from typing import List, Dict, Any, Optional, Generator, TYPE_CHECKING
from typing_extensions import Annotated, Union
from .session import AnySession, Session
import numpy as np
import logging
from uuid import uuid4
import re
from .message import Message
from .rag import ChromaDBFileWatcher
from . import defines
from .agents import AnyAgent
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class Context(BaseModel):
model_config = {"arbitrary_types_allowed": True} # Allow ChromaDBFileWatcher
# Required fields
file_watcher: Optional[ChromaDBFileWatcher] = Field(default=None, exclude=True)
# Optional fields
id: str = Field(
default_factory=lambda: str(uuid4()),
pattern=r"^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$"
)
sessions: List[Annotated[Union[*Session.__subclasses__()], Field(discriminator="session_type")]] = Field(
default_factory=list
)
user_resume: Optional[str] = None
user_job_description: Optional[str] = None
user_facts: Optional[str] = None
@ -21,78 +34,160 @@ class Context(BaseModel):
rags: List[dict] = []
message_history_length: int = 5
context_tokens: int = 0
# Class managed fields
agents: List[Annotated[Union[*Agent.__subclasses__()], Field(discriminator="agent_type")]] = Field(
default_factory=list
)
def __init__(self, id: Optional[str] = None, **kwargs):
super().__init__(id=id if id is not None else str(uuid4()), **kwargs)
processing: bool = Field(default=False, exclude=True)
# @model_validator(mode="before")
# @classmethod
# def before_model_validator(cls, values: Any):
# logger.info(f"Preparing model data: {cls} {values}")
# return values
@model_validator(mode="after")
def validate_unique_session_types(self):
"""Ensure at most one session per session_type."""
session_types = [session.session_type for session in self.sessions]
if len(session_types) != len(set(session_types)):
raise ValueError("Context cannot contain multiple sessions of the same session_type")
def after_model_validator(self):
"""Ensure at most one agent per agent_type."""
logger.info(f"Context {self.id} initialized with {len(self.agents)} agents.")
agent_types = [agent.agent_type for agent in self.agents]
if len(agent_types) != len(set(agent_types)):
raise ValueError("Context cannot contain multiple agents of the same agent_type")
for agent in self.agents:
agent.set_context(self)
return self
def get_or_create_session(self, session_type: str, **kwargs) -> Session:
def get_optimal_ctx_size(self, context, messages, ctx_buffer = 4096):
ctx = round(context + len(str(messages)) * 3 / 4)
return max(defines.max_context, min(2048, ctx + ctx_buffer))
def generate_rag_results(self, message: Message) -> Generator[Message, None, None]:
"""
Get or create and append a new session of the specified type, ensuring only one session per type exists.
Generate RAG results for the given query.
Args:
session_type: The type of session to create (e.g., 'web', 'database').
**kwargs: Additional fields required by the specific session subclass.
query: The query string to generate RAG results for.
Returns:
The created session instance.
A list of dictionaries containing the RAG results.
"""
try:
message.status = "processing"
entries : int = 0
if not self.file_watcher:
message.response = "No RAG context available."
del message.metadata["rag"]
message.status = "done"
yield message
return
message.metadata["rag"] = []
for rag in self.rags:
if not rag["enabled"]:
continue
message.response = f"Checking RAG context {rag['name']}..."
yield message
chroma_results = self.file_watcher.find_similar(query=message.prompt, top_k=10)
if chroma_results:
entries += len(chroma_results["documents"])
chroma_embedding = np.array(chroma_results["query_embedding"]).flatten() # Ensure correct shape
print(f"Chroma embedding shape: {chroma_embedding.shape}")
umap_2d = self.file_watcher.umap_model_2d.transform([chroma_embedding])[0].tolist()
print(f"UMAP 2D output: {umap_2d}, length: {len(umap_2d)}") # Debug output
umap_3d = self.file_watcher.umap_model_3d.transform([chroma_embedding])[0].tolist()
print(f"UMAP 3D output: {umap_3d}, length: {len(umap_3d)}") # Debug output
message.metadata["rag"].append({
"name": rag["name"],
**chroma_results,
"umap_embedding_2d": umap_2d,
"umap_embedding_3d": umap_3d
})
yield message
if entries == 0:
del message.metadata["rag"]
message.response = f"RAG context gathered from results from {entries} documents."
message.status = "done"
yield message
return
except Exception as e:
message.status = "error"
message.response = f"Error generating RAG results: {str(e)}"
logger.error(e)
yield message
return
def get_or_create_agent(self, agent_type: str, **kwargs) -> Agent:
"""
Get or create and append a new agent of the specified type, ensuring only one agent per type exists.
Args:
agent_type: The type of agent to create (e.g., 'web', 'database').
**kwargs: Additional fields required by the specific agent subclass.
Returns:
The created agent instance.
Raises:
ValueError: If no matching session type is found or if a session of this type already exists.
ValueError: If no matching agent type is found or if a agent of this type already exists.
"""
# Check if a session with the given session_type already exists
for session in self.sessions:
if session.session_type == session_type:
return session
# Check if a agent with the given agent_type already exists
for agent in self.agents:
if agent.agent_type == agent_type:
return agent
# Find the matching subclass
for session_cls in Session.__subclasses__():
if session_cls.model_fields["session_type"].default == session_type:
# Create the session instance with provided kwargs
session = session_cls(session_type=session_type, **kwargs)
self.sessions.append(session)
return session
for agent_cls in Agent.__subclasses__():
if agent_cls.model_fields["agent_type"].default == agent_type:
# Create the agent instance with provided kwargs
agent = agent_cls(agent_type=agent_type, context=self, **kwargs)
self.agents.append(agent)
return agent
raise ValueError(f"No session class found for session_type: {session_type}")
raise ValueError(f"No agent class found for agent_type: {agent_type}")
def add_session(self, session: AnySession) -> None:
"""Add a Session to the context, ensuring no duplicate session_type."""
if any(s.session_type == session.session_type for s in self.sessions):
raise ValueError(f"A session with session_type '{session.session_type}' already exists")
self.sessions.append(session)
def add_agent(self, agent: AnyAgent) -> None:
"""Add a Agent to the context, ensuring no duplicate agent_type."""
if any(s.agent_type == agent.agent_type for s in self.agents):
raise ValueError(f"A agent with agent_type '{agent.agent_type}' already exists")
self.agents.append(agent)
def get_session(self, session_type: str) -> Session | None:
"""Return the Session with the given session_type, or None if not found."""
for session in self.sessions:
if session.session_type == session_type:
return session
def get_agent(self, agent_type: str) -> Agent | None:
"""Return the Agent with the given agent_type, or None if not found."""
for agent in self.agents:
if agent.agent_type == agent_type:
return agent
return None
def is_valid_session_type(self, session_type: str) -> bool:
"""Check if the given session_type is valid."""
return session_type in Session.valid_session_types()
def is_valid_agent_type(self, agent_type: str) -> bool:
"""Check if the given agent_type is valid."""
return agent_type in Agent.valid_agent_types()
def get_summary(self) -> str:
"""Return a summary of the context."""
if not self.sessions:
return f"Context {self.uuid}: No sessions."
if not self.agents:
return f"Context {self.uuid}: No agents."
summary = f"Context {self.uuid}:\n"
for i, session in enumerate(self.sessions, 1):
summary += f"\nSession {i} ({session.session_type}):\n"
summary += session.conversation.get_summary()
if session.session_type == "resume":
summary += f"\nResume: {session.get_resume()}\n"
elif session.session_type == "job_description":
summary += f"\nJob Description: {session.job_description}\n"
elif session.session_type == "fact_check":
summary += f"\nFacts: {session.facts}\n"
elif session.session_type == "chat":
summary += f"\nChat Name: {session.name}\n"
for i, agent in enumerate(self.agents, 1):
summary += f"\nAgent {i} ({agent.agent_type}):\n"
summary += agent.conversation.get_summary()
if agent.agent_type == "resume":
summary += f"\nResume: {agent.get_resume()}\n"
elif agent.agent_type == "job_description":
summary += f"\nJob Description: {agent.job_description}\n"
elif agent.agent_type == "fact_check":
summary += f"\nFacts: {agent.facts}\n"
elif agent.agent_type == "chat":
summary += f"\nChat Name: {agent.name}\n"
return summary
from . agents import Agent
Context.model_rebuild()

View File

@ -9,9 +9,10 @@ embedding_model = os.getenv("EMBEDDING_MODEL_NAME", "mxbai-embed-large")
persist_directory = os.getenv("PERSIST_DIR", "/opt/backstory/chromadb")
max_context = 2048*8*2
doc_dir = "/opt/backstory/docs/"
session_dir = "/opt/backstory/sessions"
context_dir = "/opt/backstory/sessions"
static_content = "/opt/backstory/frontend/deployed"
resume_doc = "/opt/backstory/docs/resume/generic.md"
# Only used for testing; backstory-prod will not use this
key_path = "/opt/backstory/keys/key.pem"
cert_path = "/opt/backstory/keys/cert.pem"
logging_level = os.getenv("LOGGING_LEVEL", "INFO").upper()

View File

@ -3,19 +3,29 @@ from typing import Dict, List, Optional, Any
from datetime import datetime, timezone
class Message(BaseModel):
prompt: str
preamble: str = ""
content: str = ""
response: str = ""
# Required
prompt: str # Query to be answered
# Tunables
disable_rag: bool = False
disable_tools: bool = False
# Generated while processing message
status: str = "" # Status of the message
preamble: dict[str,str] = {} # Preamble to be prepended to the prompt
system_prompt: str = "" # System prompt provided to the LLM
full_content: str = "" # Full content of the message (preamble + prompt)
response: str = "" # LLM response to the preamble + query
metadata: dict[str, Any] = {
"rag": { "documents": [] },
"rag": List[dict[str, Any]],
"tools": [],
"eval_count": 0,
"eval_duration": 0,
"prompt_eval_count": 0,
"prompt_eval_duration": 0,
"ctx_size": 0,
}
actions: List[str] = []
actions: List[str] = [] # Other session modifying actions performed while processing the message
timestamp: datetime = datetime.now(timezone.utc)
def add_action(self, action: str | list[str]) -> None:

View File

@ -1,3 +1,4 @@
from pydantic import BaseModel, Field, model_validator, PrivateAttr
import os
import glob
from pathlib import Path
@ -51,8 +52,12 @@ class ChromaDBFileWatcher(FileSystemEventHandler):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.loop = loop
self._umap_collection = None
self._umap_embedding_2d = []
self._umap_embedding_3d = []
self._umap_model_2d = None
self._umap_model_3d = None
self._collection = None
self.md = MarkItDown(enable_plugins=False) # Set to True to enable plugins
#self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

View File

@ -1,78 +0,0 @@
from pydantic import BaseModel, Field, model_validator, PrivateAttr
from typing import Literal, TypeAlias, get_args
from .conversation import Conversation
class Session(BaseModel):
session_type: Literal["resume", "job_description", "fact_check", "chat"]
system_prompt: str # Mandatory
conversation: Conversation = Conversation()
context_tokens: int = 0
_content_seed: str = PrivateAttr(default="")
def get_and_reset_content_seed(self):
tmp = self._content_seed
self._content_seed = ""
return tmp
def set_content_seed(self, content: str) -> None:
"""Set the content seed for the session."""
self._content_seed = content
def get_content_seed(self) -> str:
"""Get the content seed for the session."""
return self._content_seed
@classmethod
def valid_session_types(cls) -> set[str]:
"""Return the set of valid session_type values."""
return set(get_args(cls.__annotations__["session_type"]))
# Type alias for Session or any subclass
AnySession: TypeAlias = Session # BaseModel covers Session and subclasses
class Resume(Session):
session_type: Literal["resume"] = "resume"
resume: str = ""
@model_validator(mode="after")
def validate_resume(self):
if not self.resume.strip():
raise ValueError("Resume content cannot be empty")
return self
def get_resume(self) -> str:
"""Get the resume content."""
return self.resume
def set_resume(self, resume: str) -> None:
"""Set the resume content."""
self.resume = resume
class JobDescription(Session):
session_type: Literal["job_description"] = "job_description"
job_description: str = ""
@model_validator(mode="after")
def validate_job_description(self):
if not self.job_description.strip():
raise ValueError("Job description cannot be empty")
return self
class FactCheck(Session):
session_type: Literal["fact_check"] = "fact_check"
facts: str = ""
@model_validator(mode="after")
def validate_facts(self):
if not self.facts.strip():
raise ValueError("Facts cannot be empty")
return self
class Chat(Session):
session_type: Literal["chat"] = "chat"
@model_validator(mode="after")
def validate_name(self):
return self

View File

@ -0,0 +1,32 @@
import os
import warnings
import logging
from . import defines
def setup_logging(level=defines.logging_level) -> logging.Logger:
os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR"
warnings.filterwarnings("ignore", message="Overriding a previously registered kernel")
warnings.filterwarnings("ignore", message="Warning only once for all operators")
warnings.filterwarnings("ignore", message="Couldn't find ffmpeg or avconv")
warnings.filterwarnings("ignore", message="'force_all_finite' was renamed to")
warnings.filterwarnings("ignore", message="n_jobs value 1 overridden")
numeric_level = getattr(logging, level.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError(f"Invalid log level: {level}")
logging.basicConfig(
level=numeric_level,
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True
)
# Now reduce verbosity for FastAPI, Uvicorn, Starlette
for noisy_logger in ("uvicorn", "uvicorn.error", "uvicorn.access", "fastapi", "starlette"):
logging.getLogger(noisy_logger).setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
return logger