619 lines
25 KiB
Python
619 lines
25 KiB
Python
from __future__ import annotations
|
|
from pydantic import BaseModel, Field, model_validator # type: ignore
|
|
from typing import (
|
|
Literal,
|
|
get_args,
|
|
List,
|
|
AsyncGenerator,
|
|
TYPE_CHECKING,
|
|
Optional,
|
|
ClassVar,
|
|
Any,
|
|
TypeAlias,
|
|
Dict,
|
|
Tuple,
|
|
)
|
|
import json
|
|
import time
|
|
import inspect
|
|
from abc import ABC
|
|
import asyncio
|
|
from datetime import datetime, UTC
|
|
from prometheus_client import Counter, Summary, CollectorRegistry # type: ignore
|
|
|
|
from models import ( ChatQuery, ChatMessage, ChatOptions, ChatMessageBase, ChatMessageUser, Tunables, ChatMessageType, ChatSenderType, ChatStatusType, ChatMessageMetaData)
|
|
from logger import logger
|
|
import defines
|
|
from .registry import agent_registry
|
|
from metrics import Metrics
|
|
from database import RedisDatabase # type: ignore
|
|
import model_cast
|
|
|
|
class LLMMessage(BaseModel):
|
|
role: str = Field(default="")
|
|
content: str = Field(default="")
|
|
tool_calls: Optional[List[Dict]] = Field(default={}, exclude=True)
|
|
|
|
class Agent(BaseModel, ABC):
|
|
"""
|
|
Base class for all agent types.
|
|
This class defines the common attributes and methods for all agent types.
|
|
"""
|
|
class Config:
|
|
arbitrary_types_allowed = True # Allow arbitrary types like RedisDatabase
|
|
|
|
# Agent management with pydantic
|
|
agent_type: Literal["base"] = "base"
|
|
_agent_type: ClassVar[str] = agent_type # Add this for registration
|
|
agent_persist: bool = True # Whether this agent will persist in the database
|
|
|
|
database: RedisDatabase = Field(
|
|
...,
|
|
description="Database connection for this agent, used to store and retrieve data."
|
|
)
|
|
prometheus_collector: CollectorRegistry = Field(..., description="Prometheus collector for this agent, used to track metrics.", exclude=True)
|
|
|
|
# Tunables (sets default for new Messages attached to this agent)
|
|
tunables: Tunables = Field(default_factory=Tunables)
|
|
metrics: Metrics = Field(
|
|
None, description="Metrics collector for this agent, used to track performance and usage."
|
|
)
|
|
|
|
@model_validator(mode="after")
|
|
def initialize_metrics(self) -> "Agent":
|
|
if self.metrics is None:
|
|
self.metrics = Metrics(prometheus_collector=self.prometheus_collector)
|
|
return self
|
|
|
|
# Agent properties
|
|
system_prompt: str # Mandatory
|
|
context_tokens: int = 0
|
|
|
|
# context_size is shared across all subclasses
|
|
_context_size: ClassVar[int] = int(defines.max_context * 0.5)
|
|
|
|
conversation: List[ChatMessage] = Field(
|
|
default_factory=list,
|
|
description="Conversation history for this agent, used to maintain context across messages."
|
|
)
|
|
|
|
@property
|
|
def context_size(self) -> int:
|
|
return Agent._context_size
|
|
|
|
@context_size.setter
|
|
def context_size(self, value: int):
|
|
Agent._context_size = value
|
|
|
|
def set_optimal_context_size(
|
|
self, llm: Any, model: str, prompt: str, ctx_buffer=2048
|
|
) -> int:
|
|
# Most models average 1.3-1.5 tokens per word
|
|
word_count = len(prompt.split())
|
|
tokens = int(word_count * 1.4)
|
|
|
|
# Add buffer for safety
|
|
total_ctx = tokens + ctx_buffer
|
|
|
|
if total_ctx > self.context_size:
|
|
logger.info(
|
|
f"Increasing context size from {self.context_size} to {total_ctx}"
|
|
)
|
|
|
|
# Grow the context size if necessary
|
|
self.context_size = max(self.context_size, total_ctx)
|
|
# Use actual model maximum context size
|
|
return self.context_size
|
|
|
|
# Class and pydantic model management
|
|
def __init_subclass__(cls, **kwargs) -> None:
|
|
"""Auto-register subclasses"""
|
|
super().__init_subclass__(**kwargs)
|
|
# Register this class if it has an agent_type
|
|
if hasattr(cls, "agent_type") and cls.agent_type != Agent._agent_type:
|
|
agent_registry.register(cls.agent_type, cls)
|
|
|
|
def model_dump(self, *args, **kwargs) -> Any:
|
|
# Ensure context is always excluded, even with exclude_unset=True
|
|
kwargs.setdefault("exclude", set())
|
|
if isinstance(kwargs["exclude"], set):
|
|
kwargs["exclude"].add("context")
|
|
elif isinstance(kwargs["exclude"], dict):
|
|
kwargs["exclude"]["context"] = True
|
|
return super().model_dump(*args, **kwargs)
|
|
|
|
@classmethod
|
|
def valid_agent_types(cls) -> set[str]:
|
|
"""Return the set of valid agent_type values."""
|
|
return set(get_args(cls.__annotations__["agent_type"]))
|
|
|
|
# Agent methods
|
|
def get_agent_type(self):
|
|
return self._agent_type
|
|
|
|
# async def prepare_message(self, message: ChatMessage) -> AsyncGenerator[ChatMessage, None]:
|
|
# """
|
|
# Prepare message with context information in message.preamble
|
|
# """
|
|
# logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
|
|
|
|
# self.metrics.prepare_count.labels(agent=self.agent_type).inc()
|
|
# with self.metrics.prepare_duration.labels(agent=self.agent_type).time():
|
|
# if not self.context:
|
|
# raise ValueError("Context is not set for this agent.")
|
|
|
|
# # Generate RAG content if enabled, based on the content
|
|
# rag_context = ""
|
|
# if message.tunables.enable_rag and message.prompt:
|
|
# # Gather RAG results, yielding each result
|
|
# # as it becomes available
|
|
# for message in self.context.user.generate_rag_results(message):
|
|
# logger.info(f"RAG: {message.status} - {message.content}")
|
|
# if message.status == "error":
|
|
# yield message
|
|
# return
|
|
# if message.status != "done":
|
|
# yield message
|
|
|
|
# # for rag in message.metadata.rag:
|
|
# # for doc in rag.documents:
|
|
# # rag_context += f"{doc}\n"
|
|
|
|
# message.preamble = {}
|
|
|
|
# if rag_context:
|
|
# message.preamble["context"] = f"The following is context information about {self.context.user.full_name}:\n{rag_context}"
|
|
|
|
# if message.tunables.enable_context and self.context.user_resume:
|
|
# message.preamble["resume"] = self.context.user_resume
|
|
|
|
# message.system_prompt = self.system_prompt
|
|
# message.status = ChatStatusType.DONE
|
|
# yield message
|
|
|
|
# return
|
|
|
|
# async def process_tool_calls(
|
|
# self,
|
|
# llm: Any,
|
|
# model: str,
|
|
# message: ChatMessage,
|
|
# tool_message: Any, # llama response message
|
|
# messages: List[LLMMessage],
|
|
# ) -> AsyncGenerator[ChatMessage, None]:
|
|
# logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
|
|
|
|
# self.metrics.tool_count.labels(agent=self.agent_type).inc()
|
|
# with self.metrics.tool_duration.labels(agent=self.agent_type).time():
|
|
|
|
# if not self.context:
|
|
# raise ValueError("Context is not set for this agent.")
|
|
# if not message.metadata.tools:
|
|
# raise ValueError("tools field not initialized")
|
|
|
|
# tool_metadata = message.metadata.tools
|
|
# tool_metadata["tool_calls"] = []
|
|
|
|
# message.status = "tooling"
|
|
|
|
# for i, tool_call in enumerate(tool_message.tool_calls):
|
|
# arguments = tool_call.function.arguments
|
|
# tool = tool_call.function.name
|
|
|
|
# # Yield status update before processing each tool
|
|
# message.content = (
|
|
# f"Processing tool {i+1}/{len(tool_message.tool_calls)}: {tool}..."
|
|
# )
|
|
# yield message
|
|
# logger.info(f"LLM - {message.content}")
|
|
|
|
# # Process the tool based on its type
|
|
# match tool:
|
|
# case "TickerValue":
|
|
# ticker = arguments.get("ticker")
|
|
# if not ticker:
|
|
# ret = None
|
|
# else:
|
|
# ret = TickerValue(ticker)
|
|
|
|
# case "AnalyzeSite":
|
|
# url = arguments.get("url")
|
|
# question = arguments.get(
|
|
# "question", "what is the summary of this content?"
|
|
# )
|
|
|
|
# # Additional status update for long-running operations
|
|
# message.content = (
|
|
# f"Retrieving and summarizing content from {url}..."
|
|
# )
|
|
# yield message
|
|
# ret = await AnalyzeSite(
|
|
# llm=llm, model=model, url=url, question=question
|
|
# )
|
|
|
|
# case "GenerateImage":
|
|
# prompt = arguments.get("prompt", None)
|
|
# if not prompt:
|
|
# logger.info("No prompt supplied to GenerateImage")
|
|
# ret = { "error": "No prompt supplied to GenerateImage" }
|
|
|
|
# # Additional status update for long-running operations
|
|
# message.content = (
|
|
# f"Generating image for {prompt}..."
|
|
# )
|
|
# yield message
|
|
# ret = await GenerateImage(
|
|
# llm=llm, model=model, prompt=prompt
|
|
# )
|
|
# logger.info("GenerateImage returning", ret)
|
|
|
|
# case "DateTime":
|
|
# tz = arguments.get("timezone")
|
|
# ret = DateTime(tz)
|
|
|
|
# case "WeatherForecast":
|
|
# city = arguments.get("city")
|
|
# state = arguments.get("state")
|
|
|
|
# message.content = (
|
|
# f"Fetching weather data for {city}, {state}..."
|
|
# )
|
|
# yield message
|
|
# ret = WeatherForecast(city, state)
|
|
|
|
# case _:
|
|
# logger.error(f"Requested tool {tool} does not exist")
|
|
# ret = None
|
|
|
|
# # Build response for this tool
|
|
# tool_response = {
|
|
# "role": "tool",
|
|
# "content": json.dumps(ret),
|
|
# "name": tool_call.function.name,
|
|
# }
|
|
|
|
# tool_metadata["tool_calls"].append(tool_response)
|
|
|
|
# if len(tool_metadata["tool_calls"]) == 0:
|
|
# message.status = "done"
|
|
# yield message
|
|
# return
|
|
|
|
# message_dict = LLMMessage(
|
|
# role=tool_message.get("role", "assistant"),
|
|
# content=tool_message.get("content", ""),
|
|
# tool_calls=[
|
|
# {
|
|
# "function": {
|
|
# "name": tc["function"]["name"],
|
|
# "arguments": tc["function"]["arguments"],
|
|
# }
|
|
# }
|
|
# for tc in tool_message.tool_calls
|
|
# ],
|
|
# )
|
|
|
|
# messages.append(message_dict)
|
|
# messages.extend(tool_metadata["tool_calls"])
|
|
|
|
# message.status = "thinking"
|
|
# message.content = "Incorporating tool results into response..."
|
|
# yield message
|
|
|
|
# # Decrease creativity when processing tool call requests
|
|
# message.content = ""
|
|
# start_time = time.perf_counter()
|
|
# for response in llm.chat(
|
|
# model=model,
|
|
# messages=messages,
|
|
# options={
|
|
# **message.metadata.options,
|
|
# },
|
|
# stream=True,
|
|
# ):
|
|
# # logger.info(f"LLM::Tools: {'done' if response.done else 'processing'} - {response.message}")
|
|
# message.status = "streaming"
|
|
# message.chunk = response.message.content
|
|
# message.content += message.chunk
|
|
|
|
# if not response.done:
|
|
# yield message
|
|
|
|
# if response.done:
|
|
# self.collect_metrics(response)
|
|
# message.metadata.eval_count += response.eval_count
|
|
# message.metadata.eval_duration += response.eval_duration
|
|
# message.metadata.prompt_eval_count += response.prompt_eval_count
|
|
# message.metadata.prompt_eval_duration += response.prompt_eval_duration
|
|
# self.context_tokens = (
|
|
# response.prompt_eval_count + response.eval_count
|
|
# )
|
|
# message.status = "done"
|
|
# yield message
|
|
|
|
# end_time = time.perf_counter()
|
|
# message.metadata.timers["llm_with_tools"] = end_time - start_time
|
|
# return
|
|
|
|
def collect_metrics(self, response):
|
|
self.metrics.tokens_prompt.labels(agent=self.agent_type).inc(
|
|
response.prompt_eval_count
|
|
)
|
|
self.metrics.tokens_eval.labels(agent=self.agent_type).inc(response.eval_count)
|
|
|
|
async def generate(
|
|
self, llm: Any, model: str, query: ChatQuery, session_id: str, user_id: str, temperature=0.7
|
|
) -> AsyncGenerator[ChatMessage | ChatMessageBase, None]:
|
|
logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
|
|
|
|
user_message = ChatMessageUser(
|
|
session_id=session_id,
|
|
tunables=query.tunables,
|
|
type=ChatMessageType.USER,
|
|
status=ChatStatusType.DONE,
|
|
sender=ChatSenderType.USER,
|
|
content=query.prompt.strip(),
|
|
timestamp=datetime.now(UTC)
|
|
)
|
|
|
|
chat_message = ChatMessage(
|
|
session_id=session_id,
|
|
tunables=query.tunables,
|
|
status=ChatStatusType.INITIALIZING,
|
|
type=ChatMessageType.PREPARING,
|
|
sender=ChatSenderType.ASSISTANT,
|
|
content="",
|
|
timestamp=datetime.now(UTC)
|
|
)
|
|
self.metrics.generate_count.labels(agent=self.agent_type).inc()
|
|
with self.metrics.generate_duration.labels(agent=self.agent_type).time():
|
|
# Create a pruned down message list based purely on the prompt and responses,
|
|
# discarding the full preamble generated by prepare_message
|
|
messages: List[LLMMessage] = [
|
|
LLMMessage(role="system", content=self.system_prompt)
|
|
]
|
|
messages.extend([
|
|
LLMMessage(role=m.sender, content=m.content.strip())
|
|
for m in self.conversation
|
|
])
|
|
# Only the actual user query is provided with the full context message
|
|
messages.append(
|
|
LLMMessage(role=user_message.sender, content=user_message.content.strip())
|
|
)
|
|
|
|
# message.messages = messages
|
|
chat_message.metadata = ChatMessageMetaData()
|
|
chat_message.metadata.options = ChatOptions(
|
|
seed=8911,
|
|
num_ctx=self.context_size,
|
|
temperature=temperature, # Higher temperature to encourage tool usage
|
|
)
|
|
|
|
# Create a dict for storing various timing stats
|
|
chat_message.metadata.timers = {}
|
|
|
|
# use_tools = message.tunables.enable_tools and len(self.context.tools) > 0
|
|
# message.metadata.tools = {
|
|
# "available": llm_tools(self.context.tools),
|
|
# "used": False,
|
|
# }
|
|
# tool_metadata = message.metadata.tools
|
|
|
|
# if use_tools:
|
|
# message.status = "thinking"
|
|
# message.content = f"Performing tool analysis step 1/2..."
|
|
# yield message
|
|
|
|
# logger.info("Checking for LLM tool usage")
|
|
# start_time = time.perf_counter()
|
|
# # Tools are enabled and available, so query the LLM with a short context of messages
|
|
# # in case the LLM did something like ask "Do you want me to run the tool?" and the
|
|
# # user said "Yes" -- need to keep the context in the thread.
|
|
# tool_metadata["messages"] = (
|
|
# [{"role": "system", "content": self.system_prompt}] + messages[-6:]
|
|
# if len(messages) >= 7
|
|
# else messages
|
|
# )
|
|
|
|
# response = llm.chat(
|
|
# model=model,
|
|
# messages=tool_metadata["messages"],
|
|
# tools=tool_metadata["available"],
|
|
# options={
|
|
# **message.metadata.options,
|
|
# },
|
|
# stream=False, # No need to stream the probe
|
|
# )
|
|
# self.collect_metrics(response)
|
|
|
|
# end_time = time.perf_counter()
|
|
# message.metadata.timers["tool_check"] = end_time - start_time
|
|
# if not response.message.tool_calls:
|
|
# logger.info("LLM indicates tools will not be used")
|
|
# # The LLM will not use tools, so disable use_tools so we can stream the full response
|
|
# use_tools = False
|
|
# else:
|
|
# tool_metadata["attempted"] = response.message.tool_calls
|
|
|
|
# if use_tools:
|
|
# logger.info("LLM indicates tools will be used")
|
|
|
|
# # Tools are enabled and available and the LLM indicated it will use them
|
|
# message.content = (
|
|
# f"Performing tool analysis step 2/2 (tool use suspected)..."
|
|
# )
|
|
# yield message
|
|
|
|
# logger.info(f"Performing LLM call with tools")
|
|
# start_time = time.perf_counter()
|
|
# response = llm.chat(
|
|
# model=model,
|
|
# messages=tool_metadata["messages"], # messages,
|
|
# tools=tool_metadata["available"],
|
|
# options={
|
|
# **message.metadata.options,
|
|
# },
|
|
# stream=False,
|
|
# )
|
|
# self.collect_metrics(response)
|
|
|
|
# end_time = time.perf_counter()
|
|
# message.metadata.timers["non_streaming"] = end_time - start_time
|
|
|
|
# if not response:
|
|
# message.status = "error"
|
|
# message.content = "No response from LLM."
|
|
# yield message
|
|
# return
|
|
|
|
# if response.message.tool_calls:
|
|
# tool_metadata["used"] = response.message.tool_calls
|
|
# # Process all yielded items from the handler
|
|
# start_time = time.perf_counter()
|
|
# async for message in self.process_tool_calls(
|
|
# llm=llm,
|
|
# model=model,
|
|
# message=message,
|
|
# tool_message=response.message,
|
|
# messages=messages,
|
|
# ):
|
|
# if message.status == "error":
|
|
# yield message
|
|
# return
|
|
# yield message
|
|
# end_time = time.perf_counter()
|
|
# message.metadata.timers["process_tool_calls"] = end_time - start_time
|
|
# message.status = "done"
|
|
# return
|
|
|
|
# logger.info("LLM indicated tools will be used, and then they weren't")
|
|
# message.content = response.message.content
|
|
# message.status = "done"
|
|
# yield message
|
|
# return
|
|
|
|
# not use_tools
|
|
chat_message.type = ChatMessageType.THINKING
|
|
chat_message.content = f"Generating response..."
|
|
yield chat_message
|
|
|
|
# Reset the response for streaming
|
|
chat_message.content = ""
|
|
start_time = time.perf_counter()
|
|
chat_message.type = ChatMessageType.GENERATING
|
|
chat_message.status = ChatStatusType.STREAMING
|
|
|
|
for response in llm.chat(
|
|
model=model,
|
|
messages=messages,
|
|
options={
|
|
**chat_message.metadata.model_dump(exclude_unset=True),
|
|
},
|
|
stream=True,
|
|
):
|
|
if not response:
|
|
chat_message.status = ChatStatusType.ERROR
|
|
chat_message.content = "No response from LLM."
|
|
yield chat_message
|
|
return
|
|
|
|
chat_message.content += response.message.content
|
|
|
|
if not response.done:
|
|
chat_chunk = model_cast.cast_to_model(ChatMessageBase, chat_message)
|
|
chat_chunk.content = response.message.content
|
|
yield chat_message
|
|
continue
|
|
|
|
if response.done:
|
|
self.collect_metrics(response)
|
|
chat_message.metadata.eval_count += response.eval_count
|
|
chat_message.metadata.eval_duration += response.eval_duration
|
|
chat_message.metadata.prompt_eval_count += response.prompt_eval_count
|
|
chat_message.metadata.prompt_eval_duration += response.prompt_eval_duration
|
|
self.context_tokens = (
|
|
response.prompt_eval_count + response.eval_count
|
|
)
|
|
chat_message.type = ChatMessageType.RESPONSE
|
|
chat_message.status = ChatStatusType.DONE
|
|
yield chat_message
|
|
|
|
end_time = time.perf_counter()
|
|
chat_message.metadata.timers["streamed"] = end_time - start_time
|
|
|
|
# Add the user and chat messages to the conversation
|
|
self.conversation.append(user_message)
|
|
self.conversation.append(chat_message)
|
|
return
|
|
|
|
# async def process_message(
|
|
# self, llm: Any, model: str, message: Message
|
|
# ) -> AsyncGenerator[Message, None]:
|
|
# logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
|
|
|
|
# self.metrics.process_count.labels(agent=self.agent_type).inc()
|
|
# with self.metrics.process_duration.labels(agent=self.agent_type).time():
|
|
|
|
# if not self.context:
|
|
# raise ValueError("Context is not set for this agent.")
|
|
|
|
# logger.info(
|
|
# "TODO: Implement delay queing; busy for same agent, otherwise return queue size and estimated wait time"
|
|
# )
|
|
# spinner: List[str] = ["\\", "|", "/", "-"]
|
|
# tick: int = 0
|
|
# while self.context.processing:
|
|
# message.status = "waiting"
|
|
# message.content = (
|
|
# f"Busy processing another request. Please wait. {spinner[tick]}"
|
|
# )
|
|
# tick = (tick + 1) % len(spinner)
|
|
# yield message
|
|
# await asyncio.sleep(1) # Allow the event loop to process the write
|
|
|
|
# self.context.processing = True
|
|
|
|
# message.system_prompt = (
|
|
# f"<|system|>\n{self.system_prompt.strip()}\n</|system|>"
|
|
# )
|
|
# message.context_prompt = ""
|
|
# for p in message.preamble.keys():
|
|
# message.context_prompt += (
|
|
# f"\n<|{p}|>\n{message.preamble[p].strip()}\n</|{p}>\n\n"
|
|
# )
|
|
# message.context_prompt += f"{message.prompt}"
|
|
|
|
# # Estimate token length of new messages
|
|
# message.content = f"Optimizing context..."
|
|
# message.status = "thinking"
|
|
# yield message
|
|
|
|
# message.context_size = self.set_optimal_context_size(
|
|
# llm, model, prompt=message.context_prompt
|
|
# )
|
|
|
|
# message.content = f"Processing {'RAG augmented ' if message.metadata.rag else ''}query..."
|
|
# message.status = "thinking"
|
|
# yield message
|
|
|
|
# async for message in self.generate_llm_response(
|
|
# llm=llm, model=model, message=message
|
|
# ):
|
|
# # logger.info(f"LLM: {message.status} - {f'...{message.content[-20:]}' if len(message.content) > 20 else message.content}")
|
|
# if message.status == "error":
|
|
# yield message
|
|
# self.context.processing = False
|
|
# return
|
|
# yield message
|
|
|
|
# # Done processing, add message to conversation
|
|
# message.status = "done"
|
|
# self.conversation.add(message)
|
|
# self.context.processing = False
|
|
|
|
# return
|
|
|
|
|
|
# Register the base agent
|
|
agent_registry.register(Agent._agent_type, Agent)
|