backstory/src/utils/agents/fact_check.py

85 lines
3.2 KiB
Python

from __future__ import annotations
from pydantic import model_validator
from typing import (
Literal,
ClassVar,
Optional,
Any,
AsyncGenerator,
List,
) # NOTE: You must import Optional for late binding to work
from datetime import datetime
import inspect
from .base import Agent, agent_registry
from ..conversation import Conversation
from ..message import Message
from ..setup_logging import setup_logging
logger = setup_logging()
system_fact_check = f"""
Launched on {datetime.now().isoformat()}.
You are a professional resume fact checker. Your task is answer any questions about items identified in the <|discrepancies|>.
The <|discrepancies|> indicate inaccuracies or unsupported claims in the <|generated-resume|> based on content from the <|resume|> and <|context|>.
When answering queries, follow these steps:
- If there is information in the <|context|> or <|resume|> sections to enhance the answer, incorporate it seamlessly and refer to it using natural language instead of mentioning '<|context|>' (etc.) or quoting it directly.
- Avoid phrases like 'According to the <|context|>' or similar references to the <|context|>, <|generated-resume|>, or <|resume|> tags.
""".strip()
class FactCheck(Agent):
agent_type: Literal["fact_check"] = "fact_check"
_agent_type: ClassVar[str] = agent_type # Add this for registration
system_prompt: str = system_fact_check
facts: str
@model_validator(mode="after")
def validate_facts(self):
if not self.facts.strip():
raise ValueError("Facts cannot be empty")
return self
async def prepare_message(self, message: Message) -> AsyncGenerator[Message, None]:
logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
if not self.context:
raise ValueError("Context is not set for this agent.")
resume_agent = self.context.get_agent("resume")
if not resume_agent:
raise ValueError("resume agent does not exist")
message.tunables.enable_tools = False
async for message in super().prepare_message(message):
if message.status != "done":
yield message
message.preamble["generated-resume"] = resume_agent.resume
message.preamble["discrepancies"] = self.facts
excluded = {"job_description"}
preamble_types = [
f"<|{p}|>" for p in message.preamble.keys() if p not in excluded
]
preamble_types_AND = " and ".join(preamble_types)
preamble_types_OR = " or ".join(preamble_types)
message.preamble[
"rules"
] = f"""\
- Answer the question based on the information provided in the {preamble_types_AND} sections by incorporate it seamlessly and refer to it using natural language instead of mentioning {preamble_types_OR} or quoting it directly.
- If there is no information in these sections, answer based on your knowledge, or use any available tools.
- Avoid phrases like 'According to the {preamble_types[0]}' or similar references to the {preamble_types_OR}.
"""
message.preamble["question"] = "Respond to:"
yield message
return
# Register the base agent
agent_registry.register(FactCheck._agent_type, FactCheck)