backstory/src/backend/agents/job_requirements.py

187 lines
7.8 KiB
Python

from __future__ import annotations
from pydantic import model_validator, Field # type: ignore
from typing import (
Dict,
Literal,
ClassVar,
Any,
AsyncGenerator,
List,
Optional
# override
) # NOTE: You must import Optional for late binding to work
import inspect
import re
import json
import traceback
import asyncio
import time
import asyncio
import numpy as np # type: ignore
from .base import Agent, agent_registry, LLMMessage
from models import Candidate, ChatMessage, ChatMessageBase, ChatMessageMetaData, ChatMessageType, ChatMessageUser, ChatOptions, ChatSenderType, ChatStatusType, JobRequirements
import model_cast
from logger import logger
import defines
class JobRequirementsAgent(Agent):
agent_type: Literal["job_requirements"] = "job_requirements" # type: ignore
_agent_type: ClassVar[str] = agent_type # Add this for registration
# Stage 1A: Job Analysis Implementation
def create_job_analysis_prompt(self, job_description: str) -> tuple[str, str]:
"""Create the prompt for job requirements analysis."""
logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
system_prompt = """
You are an objective job requirements analyzer. Your task is to extract and categorize the specific skills,
experiences, and qualifications required in a job description WITHOUT any reference to any candidate.
## INSTRUCTIONS:
1. Analyze ONLY the job description provided.
2. Extract company information, job title, and all requirements.
3. Extract and categorize all requirements and preferences.
4. DO NOT consider any candidate information - this is a pure job analysis task.
## OUTPUT FORMAT:
```json
{
"company_name": "Company Name",
"job_title": "Job Title",
"job_summary": "Brief summary of the job",
"job_requirements": {
"technical_skills": {
"required": ["skill1", "skill2"],
"preferred": ["skill1", "skill2"]
},
"experience_requirements": {
"required": ["exp1", "exp2"],
"preferred": ["exp1", "exp2"]
},
"education_requirements": ["req1", "req2"],
"soft_skills": ["skill1", "skill2"],
"industry_knowledge": ["knowledge1", "knowledge2"],
"responsibilities": ["resp1", "resp2"],
"company_values": ["value1", "value2"]
}
}
```
Be specific and detailed in your extraction. Break down compound requirements into individual components.
For example, "5+ years experience with React, Node.js and MongoDB" should be separated into:
- Experience: "5+ years software development"
- Technical skills: "React", "Node.js", "MongoDB"
Avoid vague categorizations and be precise about whether skills are explicitly required or just preferred.
"""
prompt = f"Job Description:\n{job_description}"
return system_prompt, prompt
async def analyze_job_requirements(
self, llm: Any, model: str, user_message: ChatMessage
) -> AsyncGenerator[ChatMessage, None]:
"""Analyze job requirements from job description."""
system_prompt, prompt = self.create_job_analysis_prompt(user_message.content)
analyze_message = user_message.model_copy()
analyze_message.content = prompt
generated_message = None
async for generated_message in self.llm_one_shot(llm, model, system_prompt=system_prompt, user_message=analyze_message):
if generated_message.status == ChatStatusType.ERROR:
generated_message.content = "Error analyzing job requirements."
yield generated_message
return
if not generated_message:
status_message = ChatMessage(
session_id=user_message.session_id,
sender=ChatSenderType.AGENT,
status = ChatStatusType.ERROR,
type = ChatMessageType.ERROR,
content = "Job requirements analysis failed to generate a response.")
yield status_message
return
generated_message.status = ChatStatusType.DONE
generated_message.type = ChatMessageType.RESPONSE
yield generated_message
return
async def generate(
self, llm: Any, model: str, user_message: ChatMessageUser, user: Candidate | None, temperature=0.7
) -> AsyncGenerator[ChatMessage, None]:
# Stage 1A: Analyze job requirements
status_message = ChatMessage(
session_id=user_message.session_id,
sender=ChatSenderType.AGENT,
status=ChatStatusType.STATUS,
type=ChatMessageType.THINKING,
content = f"Analyzing job requirements")
yield status_message
generated_message = None
async for generated_message in self.analyze_job_requirements(llm, model, user_message):
if generated_message.status == ChatStatusType.ERROR:
status_message.status = ChatStatusType.ERROR
status_message.content = generated_message.content
yield status_message
return
if not generated_message:
status_message.status = ChatStatusType.ERROR
status_message.content = "Job requirements analysis failed."
yield status_message
return
json_str = self.extract_json_from_text(generated_message.content)
job_requirements : JobRequirements | None = None
job_requirements_data = ""
company_name = ""
job_summary = ""
job_title = ""
try:
job_requirements_data = json.loads(json_str)
job_requirements_data = job_requirements_data.get("job_requirements", None)
job_title = job_requirements_data.get("job_title", "")
company_name = job_requirements_data.get("company_name", "")
job_summary = job_requirements_data.get("job_summary", "")
job_requirements = JobRequirements.model_validate(job_requirements_data)
if not job_requirements:
raise ValueError("Job requirements data is empty or invalid.")
except json.JSONDecodeError as e:
status_message.status = ChatStatusType.ERROR
status_message.content = f"Failed to parse job requirements JSON: {str(e)}\n\n{job_requirements_data}"
logger.error(f"⚠️ {status_message.content}")
yield status_message
return
except ValueError as e:
status_message.status = ChatStatusType.ERROR
status_message.content = f"Job requirements validation error: {str(e)}\n\n{job_requirements_data}"
logger.error(f"⚠️ {status_message.content}")
yield status_message
return
except Exception as e:
status_message.status = ChatStatusType.ERROR
status_message.content = f"Unexpected error processing job requirements: {str(e)}\n\n{job_requirements_data}"
logger.error(traceback.format_exc())
logger.error(f"⚠️ {status_message.content}")
yield status_message
return
status_message.status = ChatStatusType.DONE
status_message.type = ChatMessageType.RESPONSE
job_data = {
"company": company_name,
"title": job_title,
"summary": job_summary,
"requirements": job_requirements.model_dump(mode="json", exclude_unset=True)
}
status_message.content = json.dumps(job_data)
yield status_message
logger.info(f"✅ Job requirements analysis completed successfully.")
return
# Register the base agent
agent_registry.register(JobRequirementsAgent._agent_type, JobRequirementsAgent)