275 lines
10 KiB
Python
275 lines
10 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py
|
|
#
|
|
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from typing import List
|
|
|
|
import fire
|
|
import torch
|
|
import transformers
|
|
from datasets import load_dataset
|
|
import accelerate
|
|
|
|
from transformers import AutoTokenizer
|
|
from peft import (
|
|
get_peft_model_state_dict,
|
|
set_peft_model_state_dict,
|
|
)
|
|
|
|
current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
common_util_path = os.path.join(current_dir, '..')
|
|
import sys
|
|
sys.path.append(common_util_path)
|
|
from common.utils import Prompter, get_int_from_env, wandb_check, get_train_val_data
|
|
|
|
from transformers import BitsAndBytesConfig
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
# import them from ipex_llm.transformers.qlora to get a IPEX-LLM compatible Peft model
|
|
from ipex_llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training,\
|
|
LoraConfig
|
|
from ipex_llm.utils.common import invalidInputError
|
|
|
|
local_rank = get_int_from_env(["LOCAL_RANK","MPI_LOCALRANKID"], "0")
|
|
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
|
|
port = get_int_from_env(["MASTER_PORT"], 29500)
|
|
os.environ["LOCAL_RANK"] = str(local_rank)
|
|
os.environ["WORLD_SIZE"] = str(world_size)
|
|
os.environ["RANK"] = str(local_rank)
|
|
os.environ["MASTER_PORT"] = str(port)
|
|
|
|
def train(
|
|
# model/data params
|
|
base_model: str = "meta-llama/Llama-2-7b-hf", # the only required argument, default to be "meta-llama/Llama-2-7b-hf"
|
|
saved_low_bit_model: str = None, # optional, the path to the saved model with ipex-llm low-bit optimization
|
|
data_path: str = "yahma/alpaca-cleaned",
|
|
output_dir: str = "./bigdl-qlora-alpaca",
|
|
# training hyperparams
|
|
bf16: bool = True, # default to bf16
|
|
batch_size: int = 128,
|
|
micro_batch_size: int = 2, # default to be 2, limited by GPU memory
|
|
num_epochs: int = 3,
|
|
learning_rate: float = 3e-5, # default to be 3e-5 to avoid divergence
|
|
cutoff_len: int = 256,
|
|
val_set_size: int = 2000,
|
|
# lora hyperparams
|
|
lora_r: int = 8,
|
|
lora_alpha: int = 16,
|
|
lora_dropout: float = 0.05,
|
|
lora_target_modules: List[str] = [
|
|
"q_proj",
|
|
"v_proj",
|
|
"k_proj",
|
|
"o_proj",
|
|
"up_proj",
|
|
"down_proj",
|
|
"gate_proj"
|
|
],
|
|
# llm hyperparams
|
|
train_on_inputs: bool = True, # if False, masks out inputs in loss
|
|
add_eos_token: bool = False,
|
|
group_by_length: bool = False, # faster, but produces an odd training loss curve
|
|
# wandb params
|
|
wandb_project: str = "",
|
|
wandb_run_name: str = "",
|
|
wandb_watch: str = "", # options: false | gradients | all
|
|
wandb_log_model: str = "", # options: false | true
|
|
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
|
|
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
|
|
gradient_checkpointing: bool = False,
|
|
deepspeed: str = None,
|
|
training_mode: str = "lora",
|
|
deepspeed_zero3: bool = False,
|
|
save_checkpoint: bool = True,
|
|
):
|
|
invalidInputError(training_mode == "lora",
|
|
f"This example is for lora training mode, but got training_mode={training_mode}.")
|
|
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
|
print(
|
|
f"Training Alpaca-LoRA model with params:\n"
|
|
f"base_model: {base_model}\n"
|
|
f"data_path: {data_path}\n"
|
|
f"output_dir: {output_dir}\n"
|
|
f"batch_size: {batch_size}\n"
|
|
f"micro_batch_size: {micro_batch_size}\n"
|
|
f"num_epochs: {num_epochs}\n"
|
|
f"learning_rate: {learning_rate}\n"
|
|
f"cutoff_len: {cutoff_len}\n"
|
|
f"val_set_size: {val_set_size}\n"
|
|
f"lora_r: {lora_r}\n"
|
|
f"lora_alpha: {lora_alpha}\n"
|
|
f"lora_dropout: {lora_dropout}\n"
|
|
f"lora_target_modules: {lora_target_modules}\n"
|
|
f"train_on_inputs: {train_on_inputs}\n"
|
|
f"add_eos_token: {add_eos_token}\n"
|
|
f"group_by_length: {group_by_length}\n"
|
|
f"wandb_project: {wandb_project}\n"
|
|
f"wandb_run_name: {wandb_run_name}\n"
|
|
f"wandb_watch: {wandb_watch}\n"
|
|
f"wandb_log_model: {wandb_log_model}\n"
|
|
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
|
f"prompt template: {prompt_template_name}\n"
|
|
f"training_mode: {training_mode}\n"
|
|
f"deepspeed_zero3: {deepspeed_zero3}\n"
|
|
f"save_checkpoint: {save_checkpoint}\n"
|
|
)
|
|
assert (
|
|
base_model
|
|
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
|
gradient_accumulation_steps = batch_size // micro_batch_size
|
|
|
|
prompter = Prompter(prompt_template_name)
|
|
|
|
device_map = "auto"
|
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
|
ddp = world_size != 1
|
|
if ddp:
|
|
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
|
gradient_accumulation_steps = gradient_accumulation_steps // world_size
|
|
|
|
# Check if parameter passed or if set within environ
|
|
use_wandb = wandb_check(wandb_project, wandb_watch, wandb_log_model)
|
|
|
|
if saved_low_bit_model is not None:
|
|
# Load the low bit optimized model if provide the saved path
|
|
model = AutoModelForCausalLM.load_low_bit(
|
|
saved_low_bit_model,
|
|
optimize_model=False,
|
|
torch_dtype=torch.bfloat16,
|
|
modules_to_not_convert=["lm_head"],
|
|
trust_remote_code=True,
|
|
)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
base_model,
|
|
load_in_low_bit="bf16",
|
|
optimize_model=False,
|
|
torch_dtype=torch.bfloat16,
|
|
modules_to_not_convert=["lm_head"],
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
if deepspeed_zero3:
|
|
deepspeed = deepspeed if deepspeed is not None else "./deepspeed_zero3_config.json"
|
|
else:
|
|
print(f"Model loaded on rank {os.environ.get('LOCAL_RANK')}")
|
|
model = model.to(f'xpu:{os.environ.get("LOCAL_RANK", 0)}')
|
|
print(f"Model moved to rank {os.environ.get('LOCAL_RANK')}")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
|
print(f"Tokenizer loaded on rank {os.environ.get('LOCAL_RANK')}")
|
|
|
|
# For Llama family
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
print(model)
|
|
|
|
# Prepare a IPEX-LLM compatible Peft model
|
|
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=gradient_checkpointing)
|
|
|
|
config = LoraConfig(
|
|
r=lora_r,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=lora_target_modules,
|
|
lora_dropout=lora_dropout,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
training_mode=training_mode,
|
|
)
|
|
print(f"Lora Config: {config}")
|
|
model = get_peft_model(model, config)
|
|
|
|
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
|
|
data = load_dataset("json", data_files=data_path)
|
|
else:
|
|
data = load_dataset(data_path)
|
|
|
|
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
|
|
|
|
train_data, val_data = get_train_val_data(data, tokenizer, prompter, train_on_inputs,
|
|
add_eos_token, cutoff_len, val_set_size, seed=42)
|
|
|
|
# Unused
|
|
# if not ddp and torch.cuda.device_count() > 1:
|
|
# # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
|
|
# model.is_parallelizable = True
|
|
# model.model_parallel = True
|
|
|
|
trainer = transformers.Trainer(
|
|
model=model,
|
|
train_dataset=train_data,
|
|
eval_dataset=val_data,
|
|
args=transformers.TrainingArguments(
|
|
per_device_train_batch_size=micro_batch_size,
|
|
gradient_accumulation_steps=gradient_accumulation_steps,
|
|
# warmup_ratio=0.03,
|
|
# warmup_steps=100,
|
|
max_grad_norm=0.3,
|
|
num_train_epochs=num_epochs,
|
|
learning_rate=learning_rate,
|
|
lr_scheduler_type="cosine",
|
|
bf16=True, # ensure training more stable
|
|
logging_steps=1,
|
|
optim="adamw_torch",
|
|
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
|
save_strategy="steps" if save_checkpoint else "no",
|
|
eval_steps=100 if val_set_size > 0 else None,
|
|
save_steps=100,
|
|
output_dir=output_dir,
|
|
save_total_limit=100,
|
|
load_best_model_at_end=True if val_set_size > 0 and save_checkpoint else False,
|
|
ddp_find_unused_parameters=False if ddp else None,
|
|
group_by_length=group_by_length,
|
|
report_to="wandb" if use_wandb else None,
|
|
run_name=wandb_run_name if use_wandb else None,
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
ddp_backend="ccl",
|
|
deepspeed=deepspeed,
|
|
save_safetensors=False,
|
|
),
|
|
data_collator=transformers.DataCollatorForSeq2Seq(
|
|
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
|
),
|
|
)
|
|
model.config.use_cache = False
|
|
|
|
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
|
|
|
model.save_pretrained(output_dir)
|
|
|
|
print(
|
|
"\n If there's a warning about missing keys above, please disregard :)"
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(train) |