1039 lines
40 KiB
Python

from __future__ import annotations
from pydantic import BaseModel, Field # type: ignore
from typing import (
Literal,
get_args,
List,
AsyncGenerator,
Optional,
ClassVar,
Any,
)
import time
import re
from abc import ABC
from datetime import datetime, UTC
from prometheus_client import CollectorRegistry # type: ignore
import numpy as np # type: ignore
import json_extractor as json_extractor
from pydantic import BaseModel, Field # type: ignore
from uuid import uuid4
from typing import List, Optional, ClassVar, Any, Literal
from datetime import datetime, UTC
import numpy as np # type: ignore
from uuid import uuid4
from prometheus_client import CollectorRegistry # type: ignore
import os
import re
from pathlib import Path
from rag import start_file_watcher, ChromaDBFileWatcher
import defines
from logger import logger
from models import (Tunables, ChatMessageUser, ChatMessage, RagEntry, ChatMessageMetaData, ApiStatusType, Candidate, ChatContextType)
import utils.llm_proxy as llm_manager
from database.manager import RedisDatabase
from models import ChromaDBGetResponse
from utils.metrics import Metrics
from models import ( ApiActivityType, ApiMessage, ChatMessageError, ChatMessageRagSearch, ChatMessageStatus, ChatMessageStreaming, LLMMessage, ChatMessage, ChatOptions, ChatMessageUser, Tunables, ApiStatusType, ChatMessageMetaData, Candidate)
from logger import logger
import defines
from .registry import agent_registry
from models import ( ChromaDBGetResponse )
class CandidateEntity(Candidate):
model_config = {"arbitrary_types_allowed": True} # Allow ChromaDBFileWatcher, etc
id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the entity")
last_accessed: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Last accessed timestamp")
reference_count: int = Field(default=0, description="Number of active references to this entity")
async def cleanup(self):
"""Cleanup resources associated with this entity"""
# Internal instance members
CandidateEntity__agents: List[Agent] = []
CandidateEntity__observer: Optional[Any] = Field(default=None, exclude=True)
CandidateEntity__file_watcher: Optional[ChromaDBFileWatcher] = Field(default=None, exclude=True)
CandidateEntity__prometheus_collector: Optional[CollectorRegistry] = Field(
default=None, exclude=True
)
CandidateEntity__metrics: Optional[Metrics] = Field(
default=None,
description="Metrics collector for this agent, used to track performance and usage."
)
def __init__(self, candidate=None):
if candidate is not None:
# Copy attributes from the candidate instance
super().__init__(**vars(candidate))
else:
raise ValueError("CandidateEntity must be initialized with a Candidate instance or attributes")
@classmethod
def exists(cls, username: str):
# Validate username format (only allow safe characters)
if not re.match(r'^[a-zA-Z0-9_-]+$', username):
return False # Invalid username characters
# Check for minimum and maximum length
if not (3 <= len(username) <= 32):
return False # Invalid username length
# Use Path for safe path handling and normalization
user_dir = Path(defines.user_dir) / username
user_info_path = user_dir / defines.user_info_file
# Ensure the final path is actually within the intended parent directory
# to help prevent directory traversal attacks
try:
if not user_dir.resolve().is_relative_to(Path(defines.user_dir).resolve()):
return False # Path traversal attempt detected
except (ValueError, RuntimeError): # Potential exceptions from resolve()
return False
# Check if file exists
return user_info_path.is_file()
def get_or_create_agent(self, agent_type: ChatContextType) -> Agent:
"""
Get or create an agent of the specified type for this candidate.
Args:
agent_type: The type of agent to create (default is 'candidate_chat').
**kwargs: Additional fields required by the specific agent subclass.
Returns:
The created agent instance.
"""
# Only instantiate one agent of each type per user
for agent in self.CandidateEntity__agents:
if agent.agent_type == agent_type:
return agent
return get_or_create_agent(
agent_type=agent_type,
user=self,
prometheus_collector=self.prometheus_collector
)
# Wrapper properties that map into file_watcher
@property
def umap_collection(self) -> ChromaDBGetResponse:
if not self.CandidateEntity__file_watcher:
raise ValueError("initialize() has not been called.")
return self.CandidateEntity__file_watcher.umap_collection
# Fields managed by initialize()
CandidateEntity__initialized: bool = Field(default=False, exclude=True)
@property
def metrics(self) -> Metrics:
if not self.CandidateEntity__metrics:
raise ValueError("initialize() has not been called.")
return self.CandidateEntity__metrics
@property
def file_watcher(self) -> ChromaDBFileWatcher:
if not self.CandidateEntity__file_watcher:
raise ValueError("initialize() has not been called.")
return self.CandidateEntity__file_watcher
@property
def prometheus_collector(self) -> CollectorRegistry:
if not self.CandidateEntity__prometheus_collector:
raise ValueError("initialize() has not been called with a prometheus_collector.")
return self.CandidateEntity__prometheus_collector
@property
def observer(self) -> Any:
if not self.CandidateEntity__observer:
raise ValueError("initialize() has not been called.")
return self.CandidateEntity__observer
def collect_metrics(self, agent: Agent, response):
if not self.metrics:
logger.warning("No metrics collector set for this agent.")
return
self.metrics.tokens_prompt.labels(agent=agent.agent_type).inc(
response.usage.prompt_eval_count
)
self.metrics.tokens_eval.labels(agent=agent.agent_type).inc(response.usage.eval_count)
async def initialize(
self,
prometheus_collector: CollectorRegistry,
database: RedisDatabase):
if self.CandidateEntity__initialized:
# Initialization can only be attempted once; if there are multiple attempts, it means
# a subsystem is failing or there is a logic bug in the code.
#
# NOTE: It is intentional that self.CandidateEntity__initialize = True regardless of whether it
# succeeded. This prevents server loops on failure
raise ValueError("initialize can only be attempted once")
self.CandidateEntity__initialized = True
if not self.username:
raise ValueError("username can not be empty")
if not prometheus_collector:
raise ValueError("prometheus_collector can not be None")
self.CandidateEntity__prometheus_collector = prometheus_collector
self.CandidateEntity__metrics = Metrics(prometheus_collector=self.prometheus_collector)
user_dir = os.path.join(defines.user_dir, self.username)
vector_db_dir=os.path.join(user_dir, defines.persist_directory)
rag_content_dir=os.path.join(user_dir, defines.rag_content_dir)
os.makedirs(vector_db_dir, exist_ok=True)
os.makedirs(rag_content_dir, exist_ok=True)
self.CandidateEntity__observer, self.CandidateEntity__file_watcher = start_file_watcher(
llm=llm_manager.get_llm(),
user_id=self.id,
collection_name=self.username,
persist_directory=vector_db_dir,
watch_directory=rag_content_dir,
database=database,
recreate=False, # Don't recreate if exists
)
has_username_rag = any(item.name == self.username for item in self.rags)
if not has_username_rag:
self.rags.append(RagEntry(
name=self.username,
description=f"Expert data about {self.full_name}.",
))
self.rag_content_size = self.file_watcher.collection.count()
class Agent(BaseModel, ABC):
"""
Base class for all agent types.
This class defines the common attributes and methods for all agent types.
"""
class Config:
arbitrary_types_allowed = True # Allow arbitrary types like RedisDatabase
# Agent management with pydantic
agent_type: Literal["base"] = "base"
_agent_type: ClassVar[str] = agent_type # Add this for registration
user: Optional[CandidateEntity] = None
# Tunables (sets default for new Messages attached to this agent)
tunables: Tunables = Field(default_factory=Tunables)
# Agent properties
system_prompt: str = ""
context_tokens: int = 0
# context_size is shared across all subclasses
_context_size: ClassVar[int] = int(defines.max_context * 0.5)
conversation: List[ChatMessageUser] = Field(
default_factory=list,
description="Conversation history for this agent, used to maintain context across messages."
)
@property
def context_size(self) -> int:
return Agent._context_size
@context_size.setter
def context_size(self, value: int):
Agent._context_size = value
async def get_last_item(self, generator):
last_item = None
async for item in generator:
last_item = item
return last_item
def set_optimal_context_size(
self, llm: Any, model: str, prompt: str, ctx_buffer=2048
) -> int:
# Most models average 1.3-1.5 tokens per word
word_count = len(prompt.split())
tokens = int(word_count * 1.4)
# Add buffer for safety
total_ctx = tokens + ctx_buffer
if total_ctx > self.context_size:
logger.info(
f"Increasing context size from {self.context_size} to {total_ctx}"
)
# Grow the context size if necessary
self.context_size = max(self.context_size, total_ctx)
# Use actual model maximum context size
return self.context_size
# Class and pydantic model management
def __init_subclass__(cls, **kwargs) -> None:
"""Auto-register subclasses"""
super().__init_subclass__(**kwargs)
# Register this class if it has an agent_type
if hasattr(cls, "agent_type") and cls.agent_type != Agent._agent_type:
agent_registry.register(cls.agent_type, cls)
def model_dump(self, *args, **kwargs) -> Any:
# Ensure context is always excluded, even with exclude_unset=True
kwargs.setdefault("exclude", set())
if isinstance(kwargs["exclude"], set):
kwargs["exclude"].add("context")
elif isinstance(kwargs["exclude"], dict):
kwargs["exclude"]["context"] = True
return super().model_dump(*args, **kwargs)
@classmethod
def valid_agent_types(cls) -> set[str]:
"""Return the set of valid agent_type values."""
return set(get_args(cls.__annotations__["agent_type"]))
# Agent methods
def get_agent_type(self):
return self._agent_type
# async def process_tool_calls(
# self,
# llm: Any,
# model: str,
# message: ChatMessage,
# tool_message: Any, # llama response
# messages: List[LLMMessage],
# ) -> AsyncGenerator[ChatMessage, None]:
# logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
# self.metrics.tool_count.labels(agent=self.agent_type).inc()
# with self.metrics.tool_duration.labels(agent=self.agent_type).time():
# if not self.context:
# raise ValueError("Context is not set for this agent.")
# if not message.metadata.tools:
# raise ValueError("tools field not initialized")
# tool_metadata = message.metadata.tools
# tool_metadata["tool_calls"] = []
# message.status = "tooling"
# for i, tool_call in enumerate(tool_message.tool_calls):
# arguments = tool_call.function.arguments
# tool = tool_call.function.name
# # Yield status update before processing each tool
# message.content = (
# f"Processing tool {i+1}/{len(tool_message.tool_calls)}: {tool}..."
# )
# yield message
# logger.info(f"LLM - {message.content}")
# # Process the tool based on its type
# match tool:
# case "TickerValue":
# ticker = arguments.get("ticker")
# if not ticker:
# ret = None
# else:
# ret = TickerValue(ticker)
# case "AnalyzeSite":
# url = arguments.get("url")
# question = arguments.get(
# "question", "what is the summary of this content?"
# )
# # Additional status update for long-running operations
# message.content = (
# f"Retrieving and summarizing content from {url}..."
# )
# yield message
# ret = await AnalyzeSite(
# llm=llm, model=model, url=url, question=question
# )
# case "GenerateImage":
# prompt = arguments.get("prompt", None)
# if not prompt:
# logger.info("No prompt supplied to GenerateImage")
# ret = { "error": "No prompt supplied to GenerateImage" }
# # Additional status update for long-running operations
# message.content = (
# f"Generating image for {prompt}..."
# )
# yield message
# ret = await GenerateImage(
# llm=llm, model=model, prompt=prompt
# )
# logger.info("GenerateImage returning", ret)
# case "DateTime":
# tz = arguments.get("timezone")
# ret = DateTime(tz)
# case "WeatherForecast":
# city = arguments.get("city")
# state = arguments.get("state")
# message.content = (
# f"Fetching weather data for {city}, {state}..."
# )
# yield message
# ret = WeatherForecast(city, state)
# case _:
# logger.error(f"Requested tool {tool} does not exist")
# ret = None
# # Build response for this tool
# tool_response = {
# "role": "tool",
# "content": json.dumps(ret),
# "name": tool_call.function.name,
# }
# tool_metadata["tool_calls"].append(tool_response)
# if len(tool_metadata["tool_calls"]) == 0:
# message.status = "done"
# yield message
# return
# message_dict = LLMMessage(
# role=tool_message.get("role", "assistant"),
# content=tool_message.get("content", ""),
# tool_calls=[
# {
# "function": {
# "name": tc["function"]["name"],
# "arguments": tc["function"]["arguments"],
# }
# }
# for tc in tool_message.tool_calls
# ],
# )
# messages.append(message_dict)
# messages.extend(tool_metadata["tool_calls"])
# message.status = "thinking"
# message.content = "Incorporating tool results into response..."
# yield message
# # Decrease creativity when processing tool call requests
# message.content = ""
# start_time = time.perf_counter()
# for response in llm.chat(
# model=model,
# messages=messages,
# options={
# **message.metadata.options,
# },
# stream=True,
# ):
# # logger.info(f"LLM::Tools: {'done' if response.finish_reason else 'processing'} - {response}")
# message.status = "streaming"
# message.chunk = response.content
# message.content += message.chunk
# if not response.finish_reason:
# yield message
# if response.finish_reason:
# self.collect_metrics(response)
# message.metadata.eval_count += response.eval_count
# message.metadata.eval_duration += response.eval_duration
# message.metadata.prompt_eval_count += response.prompt_eval_count
# message.metadata.prompt_eval_duration += response.prompt_eval_duration
# self.context_tokens = (
# response.prompt_eval_count + response.eval_count
# )
# message.status = "done"
# yield message
# end_time = time.perf_counter()
# message.metadata.timers["llm_with_tools"] = end_time - start_time
# return
def get_rag_context(self, rag_message: ChatMessageRagSearch) -> str:
"""
Extracts the RAG context from the rag_message.
"""
if not rag_message.content:
return ""
context = []
for chroma_results in rag_message.content:
for index, metadata in enumerate(chroma_results.metadatas):
content = "\n".join([
line.strip()
for line in chroma_results.documents[index].split("\n")
if line
]).strip()
context.append(f"""
Source: {metadata.get("doc_type", "unknown")}: {metadata.get("path", "")}
Document reference: {chroma_results.ids[index]}
Content: {content}
""")
return "\n".join(context)
async def generate_rag_results(
self,
session_id: str,
prompt: str,
top_k: int=defines.default_rag_top_k,
threshold: float=defines.default_rag_threshold,
) -> AsyncGenerator[ApiMessage, None]:
"""
Generate RAG results for the given query.
Args:
query: The query string to generate RAG results for.
Returns:
A list of dictionaries containing the RAG results.
"""
if not self.user:
error_message = ChatMessageError(
session_id=session_id,
content="No user set for RAG generation."
)
yield error_message
return
results : List[ChromaDBGetResponse] = []
user: CandidateEntity = self.user
for rag in user.rags:
if not rag.enabled:
continue
status_message = ChatMessageStatus(
session_id=session_id,
activity=ApiActivityType.SEARCHING,
content = f"Searching RAG context {rag.name}..."
)
yield status_message
try:
chroma_results = await user.file_watcher.find_similar(
query=prompt, top_k=top_k, threshold=threshold
)
if not chroma_results:
continue
query_embedding = np.array(chroma_results["query_embedding"]).flatten() # type: ignore
umap_2d = user.file_watcher.umap_model_2d.transform([query_embedding])[0] # type: ignore
umap_3d = user.file_watcher.umap_model_3d.transform([query_embedding])[0] # type: ignore
rag_metadata = ChromaDBGetResponse(
name=rag.name,
query=prompt,
query_embedding=query_embedding.tolist(),
ids=chroma_results.get("ids", []),
embeddings=chroma_results.get("embeddings", []),
documents=chroma_results.get("documents", []),
metadatas=chroma_results.get("metadatas", []),
umap_embedding_2d=umap_2d.tolist(),
umap_embedding_3d=umap_3d.tolist(),
)
results.append(rag_metadata)
except Exception as e:
continue_message = ChatMessageStatus(
session_id=session_id,
activity=ApiActivityType.SEARCHING,
content=f"Error searching RAG context {rag.name}: {str(e)}"
)
yield continue_message
final_message = ChatMessageRagSearch(
session_id=session_id,
content=results,
status=ApiStatusType.DONE,
)
yield final_message
return
async def llm_one_shot(
self,
llm: Any, model: str,
session_id: str, prompt: str, system_prompt: str,
tunables: Optional[Tunables] = None,
temperature=0.7) -> AsyncGenerator[ChatMessageStatus | ChatMessageError | ChatMessageStreaming | ChatMessage, None]:
if not self.user:
error_message = ChatMessageError(
session_id=session_id,
content="No user set for chat generation."
)
yield error_message
return
self.set_optimal_context_size(
llm=llm, model=model, prompt=prompt+system_prompt
)
options = ChatOptions(
seed=8911,
num_ctx=self.context_size,
temperature=temperature,
)
messages: List[LLMMessage] = [
LLMMessage(role="system", content=system_prompt),
LLMMessage(role="user", content=prompt),
]
status_message = ChatMessageStatus(
session_id=session_id,
activity=ApiActivityType.GENERATING,
content="Generating response..."
)
yield status_message
logger.info(f"Message options: {options.model_dump(exclude_unset=True)}")
response = None
content = ""
async for response in llm.chat_stream(
model=model,
messages=messages,
options={
**options.model_dump(exclude_unset=True),
},
stream=True,
):
if not response:
error_message = ChatMessageError(
session_id=session_id,
content="No response from LLM."
)
yield error_message
return
content += response.content
if not response.finish_reason:
streaming_message = ChatMessageStreaming(
session_id=session_id,
content=response.content,
status=ApiStatusType.STREAMING,
)
yield streaming_message
if not response:
error_message = ChatMessageError(
session_id=session_id,
content="No response from LLM."
)
yield error_message
return
self.user.collect_metrics(agent=self, response=response)
self.context_tokens = (
response.usage.prompt_eval_count + response.usage.eval_count
)
chat_message = ChatMessage(
session_id=session_id,
tunables=tunables,
status=ApiStatusType.DONE,
content=content,
metadata = ChatMessageMetaData(
options=options,
eval_count=response.usage.eval_count,
eval_duration=response.usage.eval_duration,
prompt_eval_count=response.usage.prompt_eval_count,
prompt_eval_duration=response.usage.prompt_eval_duration,
)
)
yield chat_message
return
async def generate(
self, llm: Any, model: str,
session_id: str, prompt: str,
tunables: Optional[Tunables] = None,
temperature=0.7
) -> AsyncGenerator[ApiMessage, None]:
if not self.user:
error_message = ChatMessageError(
session_id=session_id,
content="No user set for chat generation."
)
yield error_message
return
user_message = ChatMessageUser(
session_id=session_id,
content=prompt,
)
self.user.metrics.generate_count.labels(agent=self.agent_type).inc()
with self.user.metrics.generate_duration.labels(agent=self.agent_type).time():
context = None
rag_message : ChatMessageRagSearch | None = None
if self.user:
message = None
async for message in self.generate_rag_results(session_id=session_id, prompt=prompt):
if message.status == ApiStatusType.ERROR:
yield message
return
# Only yield messages that are in a streaming state
if message.status == ApiStatusType.STATUS:
yield message
if not isinstance(message, ChatMessageRagSearch):
raise ValueError(
f"Expected ChatMessageRagSearch, got {type(rag_message)}"
)
rag_message = message
context = self.get_rag_context(rag_message)
# Create a pruned down message list based purely on the prompt and responses,
# discarding the full preamble generated by prepare_message
messages: List[LLMMessage] = [
LLMMessage(role="system", content=self.system_prompt)
]
# Add the conversation history to the messages
messages.extend([
LLMMessage(role="user" if isinstance(m, ChatMessageUser) else "assistant", content=m.content)
for m in self.conversation
])
# Add the RAG context to the messages if available
if context:
messages.append(
LLMMessage(
role="user",
content=f"<|context|>\nThe following is context information about {self.user.full_name}:\n{context}\n</|context|>\n\nPrompt to respond to:\n{prompt}\n"
)
)
else:
# Only the actual user query is provided with the full context message
messages.append(
LLMMessage(role="user", content=prompt)
)
# use_tools = message.tunables.enable_tools and len(self.context.tools) > 0
# message.metadata.tools = {
# "available": llm_tools(self.context.tools),
# "used": False,
# }
# tool_metadata = message.metadata.tools
# if use_tools:
# message.status = "thinking"
# message.content = f"Performing tool analysis step 1/2..."
# yield message
# logger.info("Checking for LLM tool usage")
# start_time = time.perf_counter()
# # Tools are enabled and available, so query the LLM with a short context of messages
# # in case the LLM did something like ask "Do you want me to run the tool?" and the
# # user said "Yes" -- need to keep the context in the thread.
# tool_metadata["messages"] = (
# [{"role": "system", "content": self.system_prompt}] + messages[-6:]
# if len(messages) >= 7
# else messages
# )
# response = llm.chat(
# model=model,
# messages=tool_metadata["messages"],
# tools=tool_metadata["available"],
# options={
# **message.metadata.options,
# },
# stream=False, # No need to stream the probe
# )
# self.collect_metrics(response)
# end_time = time.perf_counter()
# message.metadata.timers["tool_check"] = end_time - start_time
# if not response.tool_calls:
# logger.info("LLM indicates tools will not be used")
# # The LLM will not use tools, so disable use_tools so we can stream the full response
# use_tools = False
# else:
# tool_metadata["attempted"] = response.tool_calls
# if use_tools:
# logger.info("LLM indicates tools will be used")
# # Tools are enabled and available and the LLM indicated it will use them
# message.content = (
# f"Performing tool analysis step 2/2 (tool use suspected)..."
# )
# yield message
# logger.info(f"Performing LLM call with tools")
# start_time = time.perf_counter()
# response = llm.chat(
# model=model,
# messages=tool_metadata["messages"], # messages,
# tools=tool_metadata["available"],
# options={
# **message.metadata.options,
# },
# stream=False,
# )
# self.collect_metrics(response)
# end_time = time.perf_counter()
# message.metadata.timers["non_streaming"] = end_time - start_time
# if not response:
# message.status = "error"
# message.content = "No response from LLM."
# yield message
# return
# if response.tool_calls:
# tool_metadata["used"] = response.tool_calls
# # Process all yielded items from the handler
# start_time = time.perf_counter()
# async for message in self.process_tool_calls(
# llm=llm,
# model=model,
# message=message,
# tool_message=response,
# messages=messages,
# ):
# if message.status == "error":
# yield message
# return
# yield message
# end_time = time.perf_counter()
# message.metadata.timers["process_tool_calls"] = end_time - start_time
# message.status = "done"
# return
# logger.info("LLM indicated tools will be used, and then they weren't")
# message.content = response.content
# message.status = "done"
# yield message
# return
# not use_tools
status_message = ChatMessageStatus(
session_id=session_id,
activity=ApiActivityType.GENERATING,
content="Generating response..."
)
yield status_message
# Set the response for streaming
self.set_optimal_context_size(
llm, model, prompt=prompt
)
options = ChatOptions(
seed=8911,
num_ctx=self.context_size,
temperature=temperature,
)
logger.info(f"Message options: {options.model_dump(exclude_unset=True)}")
content = ""
start_time = time.perf_counter()
response = None
async for response in llm.chat_stream(
model=model,
messages=messages,
options={
**options.model_dump(exclude_unset=True),
},
stream=True,
):
if not response:
error_message = ChatMessageError(
session_id=session_id,
content="No response from LLM."
)
yield error_message
return
content += response.content
if not response.finish_reason:
streaming_message = ChatMessageStreaming(
session_id=session_id,
content=response.content,
)
yield streaming_message
if not response:
error_message = ChatMessageError(
session_id=session_id,
content="No response from LLM."
)
yield error_message
return
self.user.collect_metrics(agent=self, response=response)
self.context_tokens = (
response.usage.prompt_eval_count + response.usage.eval_count
)
end_time = time.perf_counter()
chat_message = ChatMessage(
session_id=session_id,
tunables=tunables,
status=ApiStatusType.DONE,
content=content,
metadata = ChatMessageMetaData(
options=options,
eval_count=response.usage.eval_count,
eval_duration=response.usage.eval_duration,
prompt_eval_count=response.usage.prompt_eval_count,
prompt_eval_duration=response.usage.prompt_eval_duration,
rag_results=rag_message.content if rag_message else [],
timers={
"llm_streamed": end_time - start_time,
"llm_with_tools": 0, # Placeholder for tool processing time
},
)
)
# Add the user and chat messages to the conversation
self.conversation.append(user_message)
self.conversation.append(chat_message)
yield chat_message
return
# async def process_message(
# self, llm: Any, model: str, message: Message
# ) -> AsyncGenerator[Message, None]:
# logger.info(f"{self.agent_type} - {inspect.stack()[0].function}")
# self.metrics.process_count.labels(agent=self.agent_type).inc()
# with self.metrics.process_duration.labels(agent=self.agent_type).time():
# if not self.context:
# raise ValueError("Context is not set for this agent.")
# logger.info(
# "TODO: Implement delay queing; busy for same agent, otherwise return queue size and estimated wait time"
# )
# spinner: List[str] = ["\\", "|", "/", "-"]
# tick: int = 0
# while self.context.processing:
# message.status = "waiting"
# message.content = (
# f"Busy processing another request. Please wait. {spinner[tick]}"
# )
# tick = (tick + 1) % len(spinner)
# yield message
# await asyncio.sleep(1) # Allow the event loop to process the write
# self.context.processing = True
# message.system_prompt = (
# f"<|system|>\n{self.system_prompt.strip()}\n</|system|>"
# )
# message.context_prompt = ""
# for p in message.preamble.keys():
# message.context_prompt += (
# f"\n<|{p}|>\n{message.preamble[p].strip()}\n</|{p}>\n\n"
# )
# message.context_prompt += f"{message.prompt}"
# # Estimate token length of new messages
# message.content = f"Optimizing context..."
# message.status = "thinking"
# yield message
# message.context_size = self.set_optimal_context_size(
# llm, model, prompt=message.context_prompt
# )
# message.content = f"Processing {'RAG augmented ' if message.metadata.rag else ''}query..."
# message.status = "thinking"
# yield message
# async for message in self.generate_llm_response(
# llm=llm, model=model, message=message
# ):
# # logger.info(f"LLM: {message.status} - {f'...{message.content[-20:]}' if len(message.content) > 20 else message.content}")
# if message.status == "error":
# yield message
# self.context.processing = False
# return
# yield message
# # Done processing, add message to conversation
# message.status = "done"
# self.conversation.add(message)
# self.context.processing = False
# return
def extract_json_blocks(self, text: str, allow_multiple: bool = False) -> List[dict]:
"""
Extract JSON blocks from text, even if surrounded by markdown or noisy text.
If allow_multiple is True, returns all JSON blocks; otherwise, only the first.
"""
return json_extractor.extract_json_blocks(text, allow_multiple)
def extract_json_from_text(self, text: str) -> str:
"""Extract JSON string from text that may contain other content."""
return json_extractor.extract_json_from_text(text)
def extract_markdown_from_text(self, text: str) -> str:
"""Extract Markdown string from text that may contain other content."""
markdown_pattern = r"```(md|markdown)\s*([\s\S]*?)\s*```"
match = re.search(markdown_pattern, text)
if match:
return match.group(2).strip()
raise ValueError("No Markdown found in the response")
_agents: List[Agent] = []
def get_or_create_agent(
agent_type: str,
prometheus_collector: CollectorRegistry,
user: Optional[CandidateEntity]=None) -> Agent:
"""
Get or create and append a new agent of the specified type, ensuring only one agent per type exists.
Args:
agent_type: The type of agent to create (e.g., 'general', 'candidate_chat', 'image_generation').
**kwargs: Additional fields required by the specific agent subclass.
Returns:
The created agent instance.
Raises:
ValueError: If no matching agent type is found or if a agent of this type already exists.
"""
# Check if a global (non-user) agent with the given agent_type already exists
if not user:
for agent in _agents:
if agent.agent_type == agent_type:
return agent
# Find the matching subclass
for agent_cls in Agent.__subclasses__():
if agent_cls.model_fields["agent_type"].default == agent_type:
# Create the agent instance with provided kwargs
agent = agent_cls(agent_type=agent_type, # type: ignore[call-arg]
user=user)
_agents.append(agent)
return agent
raise ValueError(f"No agent class found for agent_type: {agent_type}")
# Register the base agent
agent_registry.register(Agent._agent_type, Agent)
CandidateEntity.model_rebuild()