1
0
James P. Ketrenos b079f12481 Added scripts/test
Signed-off-by: James P. Ketrenos <james.p.ketrenos@intel.com>
2019-09-23 19:59:28 -07:00
2019-09-23 19:59:28 -07:00
2019-09-17 16:03:32 -07:00
2019-09-23 20:07:02 -07:00
2019-09-23 20:07:02 -07:00
2019-09-23 20:00:45 -07:00

Intel Media FFMPEG Transcode Container

This project hosts a container demonstrating the use of ffmpeg using GPU offload for transcode operations.

Usage examples

Build the container

Build the container:

docker build . -t intel-media-ffmpeg

or you can pull the container from Harbor:

docker pull amr-registry.caas.intel.com/vtt-osgc/solutions/intel-media-ffmpeg
docker tag amr-registry.caas.intel.com/vtt-osgc/solutions/intel-media-ffmpeg intel-media-ffmpeg

Download test content

You will need some test content to run the following tests. You can download a test stream here:

[ ! -e media ] && mkdir media
wget -q -O media/AUD_MW_E.264 https://fate-suite.libav.org/h264-conformance/AUD_MW_E.264

Run a set of tests in sequence

The following will decode, encode, and transcode the sample content:

HOST_MEDIA=$(pwd)/media
[ ! -e "${HOST_MEDIA}/AUD_MW_E.264" ] && {
  mkdir -p ${HOST_MEDIA}
  wget -q -O ${HOST_MEDIA}/AUD_MW_E.264 https://fate-suite.libav.org/h264-conformance/AUD_MW_E.264
}
tests=(
  "decode AUD_MW_E.264 AUD_MW.yuv"
  "encode AUD_MW.yuv AUD_MW_E.h264"
  "transcode AUD_MW_E.264 AUD_MW_E.hevc"
  "1N_transcode AUD_MW_E.264 AUD_1N"
)
for test in "${tests[@]}"; do
  test=($test)
  docker run --rm \
    --volume ${HOST_MEDIA}:/media -it \
    --device=/dev/dri -e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
      intel-media-ffmpeg ${test[*]} || {
    echo "Error: Test failed: ${test[*]}"
    break
  }
done

If successful, looking in ${HOST_MEDIA} should show the following files:

$ ls -1tr "${HOST_MEDIA}"
AUD_MW_E.264
AUD_MW.yuv
AUD_MW_E.h264
AUD_MW_E.hevc
AUD_1N-5M.mp4
AUD_1N-4M60FPS.h264

Launch a shell in the container

The examples below are all assumed to be running in the container's environment:

docker run \
  --rm \
  --device=/dev/dri \
  -e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
  -it \
  intel-media-ffmpeg \
  shell

Decode

AVC (H.264) video decode and save as YUV 420P raw file:

IN_FILE=AUD_WM_E.264
OUT_FILE=AUD_MW.yuv
  ffmpeg \
    -hwaccel qsv \
    -qsv_device ${QSV_DEVICE:-/dev/dri/renderD128} \
    -c:v h264_qsv \
    -i /media/"${IN_FILE}" \
    -vf hwdownload,format=nv12 -pix_fmt yuv420p \
    -y \
    /media/"${OUT_FILE}"

Encode

Encode a 10 frames of 720p raw input as H264 with 5Mbps using VBR mode:

IN_FILE=AUD_MW.yuv
OUT_FILE=AUD_MW_E.h264
  ffmpeg \
    -loglevel debug \
    -init_hw_device vaapi=va:${QSV_DEVICE:-/dev/dri/renderD128} \
    -init_hw_device qsv=hw@va \
    -filter_hw_device hw \
    -f rawvideo \
    -pix_fmt yuv420p \
    -s:v 176x144 \
    -i /media/"${IN_FILE}" \
    -vf hwupload=extra_hw_frames=64,format=qsv \
    -c:v h264_qsv \
    -b:v 5M \
    -frames:v 10 \
    -y \
    /media/"${OUT_FILE}"

Transcode

AVC (H.264) => HEVC (H.265) with 5Mbps using VBR

IN_FILE=AUD_MW_E.264
OUT_FILE=AUD_MW_E.hevc
  ffmpeg \
    -loglevel debug \
    -hwaccel qsv \
    -qsv_device ${QSV_DEVICE:-/dev/dri/renderD128} \
    -c:v h264_qsv \
    -i /media/"${IN_FILE}" \
    -c:v hevc_qsv \
    -b:v 5M \
    -y \
    /media/"${OUT_FILE}"

1:N transcoding

IN_FILE=AUD_MW_E.264
OUT_FILE=AUD_1N_
  ffmpeg \
    -hwaccel qsv \
    -qsv_device ${QSV_DEVICE} \
    -c:v h264_qsv \
    -i /media/"${IN_FILE}" \
    -filter_complex "split=2[s1][s2]; \
                     [s1]scale_qsv=1280:720[o1]; \
                     [s2]vpp_qsv=framerate=60[o2]" \
    -map [o1] -c:v h264_qsv -b:v 5M /media/"${OUT_FILE}-5M.mp4" \
    -map [o2] -c:v h264_qsv -b:v 4M /media/"${OUT_FILE}-4M60FPS.h264"

Developing

The Dockerfile itself is constructed from re-usable snippets, located in the templates/ directory, and can be regenerated by running:

scripts/build-dockerfile

The above script uses environment substitution to stamp version information within the created Dockerfile. The files which declare the environment variables are in SOLUTION and MANIFEST.

After joining the template/* pieces together, the file Dockerfile.solution is then added to the Dockerfile with environment substitution.

SOLUTION

Solution specific definitions:

CONTAINER_IMAGE is used as the container tag name
OS_DISTRO       is used as the base OS distribution. Possible values: ubuntu
OS_RELEASE      is used as the OS version. Possible values: disco, eoan

MANIFEST

The version of MANIFEST is created by the set of Agama packages from the Agama repository and name-mangling them to be a VERSION declaration:

For example:

libgl1-mesa-glx_19.0.1-agama-109_amd64.deb

is changed to:

LIBGL1_MESA_GLX_VERSION=19.0.1-agama-109

The script you can use to recreate the OS_RELEASE defined in SOLUTION is:

NOTE: This only works on the Ubuntu releases.

AGAMA_VERSION=169
. SOLUTION
echo "AGAMA_VERSION=${AGAMA_VERSION}" > MANIFEST
wget -q -O - \
  https://osgc.jf.intel.com/packages/agama/ubuntu/dists/${OS_RELEASE}/main/binary-amd64/Packages.bz2 | 
    bunzip2 | 
    sed -nE 's/^(Package|Version): (.*)/\2/p' |
    paste -s -d' \n' |
    while read package version rest; do 
      package=$(echo $package | sed -E -e s#-#_#g -e 's#(.*)#\U\1#g')_VERSION
      echo $package=$version
    done | grep ${AGAMA_VERSION}\$ >> MANIFEST

This allows the Dockerfile templates to then version pin Agama packages:

  RUN apt-get install -y libgl1-mesa-glx=$LIBGL1_MESA_GLX_VERSION

The scripts/build-dockerfile loads MANIFEST, which defines LIBGL1_MESA_GLX_VERSION. That is then subsituted for the version in the above Dockerfile snippet when being placed into the main Dockerfile.

Tagging

If the build succeeds, we want to be able to tag the git project as well as corresponding Docker images with the appropriate Agama tag:

. MANIFEST ; git tag -f agama-${AGAMA_VERSION}

Appendix A: Multicard

Most of the filters and drivers for ffmpeg will default to connecting to /dev/dri/renderD128.

If you have multiple cards, the card you want to connect to might be exposed on a different render interface.

You can configure which interface is used by setting the QSV_DEVICE environment variable prior to running intel-docker (or by passing -e QSV_DEVICE to docker if you run it manually.)

You can find out the correct path for your Intel Graphics card by running:

ls -l /dev/dri/by-path/pci-*$(lspci | grep Intel.*Graphics | cut -d " " -f1)*

If the interface is on /dev/dri/renderD129, set QSV_DEVICE as follows:

export QSV_DEVICE=/dev/dri/renderD129
Description
Intel graphics driver hardware accelerated FFMPEG
Readme 447 KiB