Remove "retinaface" from being used

Signed-off-by: James P. Ketrenos <james.p.ketrenos@intel.com>
This commit is contained in:
James P. Ketrenos 2023-01-14 16:00:18 -08:00
parent 3c8eeba2d0
commit 4a900d408b
3 changed files with 42 additions and 44 deletions

View File

@ -26,9 +26,8 @@ RUN DEBIAN_FRONTEND=NONINTERACTIVE apt-get install -y \
# Install the latest npm and npx
RUN npm install --global npm@latest
# Install deepface and retina-face
# Install deepface
RUN pip install deepface
RUN pip install retina-face
RUN pip install piexif
# numpy 1.24 deprecated float; deepface is still using it, so we need to

View File

@ -21,6 +21,8 @@ pictures_path = merge_config_path(config['path'], config['picturesPath'])
faces_path = merge_config_path(config['path'], config['facesPath'])
db_path = merge_config_path(config['path'], config["db"]["photos"]["host"])
html_base = config['basePath']
if html_base == "/":
html_base = "."
# TODO
# Switch to using DBSCAN

View File

@ -7,8 +7,6 @@ import argparse
from PIL import Image, ImageOps
from deepface import DeepFace
from deepface.detectors import FaceDetector
from retinaface import RetinaFace
import numpy as np
import cv2
@ -24,8 +22,8 @@ faces_path = merge_config_path(config['path'], config['facesPath'])
db_path = merge_config_path(config['path'], config["db"]["photos"]["host"])
html_base = config['basePath']
model_name = 'VGG-Face' # 'ArcFace'
detector_backend = 'mtcnn' # 'retinaface'
model_name = 'VGG-Face'
detector_backend = 'mtcnn'
model = DeepFace.build_model(model_name)
# Derived from
@ -70,44 +68,38 @@ def variance_of_laplacian(image):
def extract_faces(
img, threshold=0.95, allow_upscaling = True, focus_threshold = 100):
if detector_backend == 'retinaface':
faces = RetinaFace.detect_faces(
img_path = img,
threshold = threshold,
model = model,
allow_upscaling = allow_upscaling)
elif detector_backend == 'mtcnn':
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # mtcnn expects RGB
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # mtcnn expects RGB
redirect_on()
res = face_detector.detect_faces(img_rgb)
redirect_off()
redirect_on()
res = face_detector.detect_faces(img_rgb)
redirect_off()
faces = {}
if type(res) == list:
for i, face in enumerate(res):
if threshold > face['confidence']:
continue
x = face['box'][0]
y = face['box'][1]
w = face['box'][2]
h = face['box'][3]
# If face is less than 2.5% of the image width and height,
# skip it (too small) -- filters out likely blurry faces in
# large group photos where the actual face may exceed
# min_face_size passed to MTCNN
if 0.025 > w / img.shape[0] and 0.025 > h / img.shape[1]:
print(f'Dropping due to small face size: {w / img.shape[0]} x {h / img.shape[1]}')
continue
faces[f'face_{i+1}'] = { # standardize properties
'facial_area': [ x, y, x + w, y + h ],
'landmarks': {
'left_eye': list(face['keypoints']['left_eye']),
'right_eye': list(face['keypoints']['right_eye']),
},
'score': face['confidence'],
}
if type(res) != list:
return None
faces = {}
for i, face in enumerate(res):
if threshold > face['confidence']:
continue
x = face['box'][0]
y = face['box'][1]
w = face['box'][2]
h = face['box'][3]
# If face is less than 2.5% of the image width and height,
# skip it (too small) -- filters out likely blurry faces in
# large group photos where the actual face may exceed
# min_face_size passed to MTCNN
if 0.025 > w / img.shape[0] and 0.025 > h / img.shape[1]:
print(f'Dropping due to small face size: {w / img.shape[0]} x {h / img.shape[1]}')
continue
faces[f'face_{i+1}'] = { # standardize properties
'facial_area': [ x, y, x + w, y + h ],
'landmarks': {
'left_eye': list(face['keypoints']['left_eye']),
'right_eye': list(face['keypoints']['right_eye']),
},
'score': face['confidence'],
}
# Re-implementation of 'extract_faces' with the addition of keeping a
# copy of the face image for caching on disk
@ -190,8 +182,13 @@ def extract_faces(
parser = argparse.ArgumentParser(description = 'Detect faces in images.')
parser.add_argument('photos', metavar='PHOTO', type=int, nargs='*',
help='PHOTO ID to scan (default: all unscanned photos)')
parser.add_argument(
'photos',
metavar = 'PHOTO',
type=int,
nargs='*',
help = 'PHOTO ID to scan (default: all unscanned photos)'
)
args = parser.parse_args()
print(args)