Add face-crop creation

Signed-off-by: James Ketrenos <james_gitlab@ketrenos.com>
This commit is contained in:
James Ketrenos 2020-01-05 15:25:41 -08:00
parent ca956cc8af
commit 553a80fce1
2 changed files with 438 additions and 289 deletions

View File

@ -28,7 +28,7 @@ const config = require("config"),
fs = require("fs"),
canvas = require("canvas");
const { Canvas, Image, ImageData } = canvas;
const { createCanvas, Canvas, Image, ImageData } = canvas;
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
@ -43,211 +43,245 @@ let photoDB = null;
console.log("Loading pictures out of: " + picturesPath);
faceapi.nets.ssdMobilenetv1.loadFromDisk('./models')
.then(() => {
console.log("ssdMobileNetv1 loaded.");
process.stdout.write("Loading DB.");
require("./db/photos").then(function(db) {
process.stdout.write("done\n");
photoDB = db;
}).then(() => {
console.log("DB connected.");
process.stdout.write("Loading models.");
return faceapi.nets.ssdMobilenetv1.loadFromDisk('./models');
}).then(() => {
process.stdout.write(".");
return faceapi.nets.faceLandmark68Net.loadFromDisk('./models');
}).then(() => {
console.log("landmark68 loaded.");
process.stdout.write(".");
return faceapi.nets.faceRecognitionNet.loadFromDisk('./models');
}).then(() => {
console.log("faceRecognitionNet loaded.");
return require("./db/photos").then(function(db) {
photoDB = db;
}).then(() => {
console.log("DB connected.");
}).then(() => {
console.log("Beginning face detection scanning.");
return photoDB.sequelize.query("SELECT photos.id,photos.filename,photos.width,photos.height,albums.path " +
"FROM photos " +
"LEFT JOIN albums ON (albums.id=photos.albumId) " +
"WHERE faces=-1 AND photos.duplicate=0 AND photos.deleted=0 ORDER BY albums.path,photos.filename", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}
).then((results) => {
const total = results.length;
let remaining = total,
processed = 0,
lastStatus = Date.now();
console.log(`${results.length} photos have not had faces scanned.`);
return Promise.map(results, (photo) => {
const photoPath = photo.path + photo.filename;
console.log("Beginning face detection scanning.");
return photoDB.sequelize.query("SELECT photos.id,photos.filename,photos.width,photos.height,albums.path " +
"FROM photos " +
"LEFT JOIN albums ON (albums.id=photos.albumId) " +
"WHERE faces=-1 AND photos.duplicate=0 AND photos.deleted=0 ORDER BY albums.path,photos.filename", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
});
}).then((needToScan) => {
const total = needToScan.length;
let remaining = total,
processed = 0,
lastStatus = Date.now();
console.log(`${needToScan.length} photos have not had faces scanned.`);
console.log(`Processing ${photoPath}...`);
return Promise.map(needToScan, (photo) => {
const photoPath = photo.path + photo.filename;
/* Remove any existing face data for this photo */
return photoDB.sequelize.query("SELECT id FROM faces WHERE photoId=:id", {
replacements: photo,
}).then((faces) => {
/* For each face-id, remove any face-data files, and then remove all the entries
* from the DB */
return Promise.map(faces, (face) => {
const id = face.id,
dataPath = faceData + "/" + (id % 100) + "/" + id + "-data.json";
return exists(dataPath).then((result) => {
if (result) {
console.log(`...removing ${dataPath}`);
return unlink(dataPath);
}
});
}).then(() => {
return photoDB.sequelize.query("DELETE FROM faces WHERE photoId=:id", {
replacements: photo,
});
console.log(`Processing ${photoPath}...`);
/* Remove any existing face data for this photo */
return photoDB.sequelize.query("SELECT id FROM faces WHERE photoId=:id", {
replacements: photo,
}).then((faces) => {
/* For each face-id, remove any face-data files, and then remove all the entries
* from the DB */
return Promise.map(faces, (face) => {
return Promise.map([ "-data.json", "-original.png" ], (suffix) => {
const id = face.id,
dataPath = faceData + "/" + (id % 100) + "/" + id + suffix;
return exists(dataPath).then((result) => {
if (result) {
console.log(`...removing ${dataPath}`);
return unlink(dataPath);
}
});
}).then(async () => {
const image = await canvas.loadImage(picturesPath + photoPath);
const detections = await faceapi.detectAllFaces(image,
new faceapi.SsdMobilenetv1Options({
minConfidence: 0.8
})
).withFaceLandmarks().withFaceDescriptors();
if (detections.length > 0) {
console.log(`...${detections.length} faces identified.`);
}
return Promise.map(detections, (face) => {
const detection = face.detection;
const width = detection._box._width,
height = detection._box._height,
replacements = {
id: photo.id,
top: detection._box._y / detection._imageDims.height,
left: detection._box._x / detection._imageDims.width,
bottom: (detection._box._y + height) / detection._imageDims.height,
right: (detection._box._x + width) / detection._imageDims.width,
faceConfidence: detection._score
};
return photoDB.sequelize.query("INSERT INTO faces (photoId,top,left,bottom,right,faceConfidence) " +
"VALUES (:id,:top,:left,:bottom,:right,:faceConfidence)", {
replacements: replacements
}).spread((results, metadata) => {
return metadata.lastID;
}).then((id) => {
console.log(`...DB id ${id}. Writing descriptor data...`);
const path = faceData + "/" + (id % 100);
return mkdir(path).then(() => {
const dataPath = path + "/" + id + "-data.json",
data = [];
for (let i = 0; i < 128; i++) {
data.push(face.descriptor[i]);
}
fs.writeFileSync(dataPath, JSON.stringify(data));
});
});
}).then(() => {
return photoDB.sequelize.query("UPDATE photos SET faces=:faces WHERE id=:id", {
replacements: {
id: photo.id,
faces: detections.length
},
});
});
}).catch((error) => {
console.warn("Skipping out on image " + photoPath + " and marking to 0 faces to prevent future scanning.");
return photoDB.sequelize.query("UPDATE photos SET faces=:faces WHERE id=:id", {
replacements: {
id: photo.id,
faces: 0
},
});
}).then(() => {
processed++;
const now = Date.now();
if (now - lastStatus > 5000) {
const rate = Math.round(10000 * (remaining - (total - processed)) / (now - lastStatus)) / 10,
eta = Math.round((total - processed) / rate);
lastStatus = now;
remaining = total - processed;
console.log(`Processing ${rate} images per second. ${remaining} images to be processed. ETA: ${eta}s`);
}
});
}, {
concurrency: maxConcurrency
}).then(() => {
return photoDB.sequelize.query("DELETE FROM faces WHERE photoId=:id", {
replacements: photo,
});
});
});
}).then(() => {
console.log("Looking for face distances that need to be updated...");
const descriptors = {};
}).then(async () => {
/* Process image for faces data */
const image = await canvas.loadImage(picturesPath + photoPath);
const detections = await faceapi.detectAllFaces(image,
new faceapi.SsdMobilenetv1Options({
minConfidence: 0.8
})
).withFaceLandmarks().withFaceDescriptors();
return photoDB.sequelize.query("SELECT faces.id FROM faces ORDER BY faces.id DESC LIMIT 1", {
if (detections.length > 0) {
console.log(`...${detections.length} faces identified in ${photoPath}.`);
}
return Promise.map(detections, (face) => {
const detection = face.detection;
const width = detection._box._width,
height = detection._box._height,
replacements = {
id: photo.id,
top: detection._box._y / detection._imageDims.height,
left: detection._box._x / detection._imageDims.width,
bottom: (detection._box._y + height) / detection._imageDims.height,
right: (detection._box._x + width) / detection._imageDims.width,
faceConfidence: detection._score
};
return photoDB.sequelize.query("INSERT INTO faces (photoId,top,left,bottom,right,faceConfidence) " +
"VALUES (:id,:top,:left,:bottom,:right,:faceConfidence)", {
replacements: replacements
}).spread((results, metadata) => {
return metadata.lastID;
}).then((id) => {
const path = faceData + (id % 100);
return mkdir(path).then(() => {
const dataPath = `${path}/${id}-data.json`, data = [];
console.log(`...writing descriptor data to ${dataPath}...`);
for (let i = 0; i < 128; i++) {
data.push(face.descriptor[i]);
}
fs.writeFileSync(dataPath, JSON.stringify(data));
}).then(() => {
const canvas = createCanvas(200, 200),
target = `${path}/${id}-original.png`,
ctx = canvas.getContext('2d'),
box = face.detection._box,
aspect = box._width / box._height,
dx = (aspect > 1.0) ? 200 : (200 * aspect),
dy = (aspect < 1.0) ? 200 : (200 / aspect);
ctx.fillStyle = "rgba(0, 0, 0, 0)";
ctx.fillRect(0, 0, 200, 200);
ctx.drawImage(image, box._x, box._y, box._width, box._height,
Math.floor((200 - dx) * 0.5),
Math.floor((200 - dy) * 0.5), dx, dy);
console.log(`...writing face crop to ${target}.`);
fs.writeFileSync(target, canvas.toBuffer("image/png", {
quality: 0.95,
chromaSubsampling: false
}));
}).catch((error) => {
console.error(error);
process.exit(-1);
});
});
}).then(() => {
return photoDB.sequelize.query("UPDATE photos SET faces=:faces WHERE id=:id", {
replacements: {
id: photo.id,
faces: detections.length
},
});
});
}).catch((error) => {
console.warn("Skipping out on image " + photoPath + " and marking to 0 faces to prevent future scanning.");
return photoDB.sequelize.query("UPDATE photos SET faces=:faces WHERE id=:id", {
replacements: {
id: photo.id,
faces: 0
},
});
}).then(() => {
processed++;
const now = Date.now();
if (now - lastStatus > 5000) {
const rate = Math.round(10000 * (remaining - (total - processed)) / (now - lastStatus)) / 10,
eta = Math.round((total - processed) / rate);
lastStatus = now;
remaining = total - processed;
console.log(`Processing ${rate} images per second. ${remaining} images to be processed. ETA: ${eta}s`);
}
});
}, {
concurrency: maxConcurrency
});
}).then(() => {
console.log("Looking for face distances that need to be updated...");
let maxId;
return photoDB.sequelize.query("SELECT faces.id FROM faces ORDER BY faces.id DESC LIMIT 1", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((results) => {
if (!results.length) {
console.log("...no faces exist yet to generate distances.");
maxId = 0;
return [];
}
maxId = results[0].id;
return photoDB.sequelize.query(
"SELECT faces.id,faces.lastComparedId " +
"FROM faces INNER JOIN photos ON photos.duplicate=0 AND photos.deleted=0 AND photos.id=faces.photoId " +
"WHERE faces.lastComparedId<:maxId OR faces.lastComparedId IS NULL " +
"ORDER BY faces.id ASC", {
replacements: {
maxId: maxId
},
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((results) => {
if (!results.length) {
console.log("...no faces exist yet to generate distances.");
return;
}
const maxId = results[0].id;
return photoDB.sequelize.query(
"SELECT faces.id,faces.lastComparedId " +
"FROM faces INNER JOIN photos ON photos.duplicate=0 AND photos.deleted=0 AND photos.id=faces.photoId " +
"WHERE faces.lastComparedId<:maxId OR faces.lastComparedId IS NULL", {
replacements: {
maxId: maxId
},
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((facesToUpdate) => {
console.log(`...${facesToUpdate.length} faces need to be updated.`);
if (facesToUpdate.length == 0) {
return facesToUpdate;
});
}).then((facesToUpdate) => {
console.log(`...${facesToUpdate.length} faces need distances updated.`);
if (facesToUpdate.length == 0) {
return facesToUpdate;
}
const descriptors = {};
return photoDB.sequelize.query(
"SELECT id FROM faces ORDER BY id ASC", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((allFaces) => {
console.log(`...reading ${allFaces.length} descriptors...`);
return Promise.map(allFaces, (face) => {
const id = face.id,
dataPath = faceData + "/" + (id % 100) + "/" + id + "-data.json";
if (id in descriptors) {
return;
}
console.log("...removing old assets.");
return photoDB.sequelize.query(
"SELECT id FROM faces", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((allFaces) => {
console.log(`...reading ${allFaces.length} descriptors...`);
return Promise.map(allFaces, (face) => {
const id = face.id,
dataPath = faceData + "/" + (id % 100) + "/" + id + "-data.json";
if (id in descriptors) {
return;
}
return exists(dataPath).then((doesExist) => {
if (!doesExist) {
console.warn(`${dataPath} is missing!`);
return;
}
descriptors[id] = JSON.parse(fs.readFileSync(dataPath));
});
}, {
concurrency: maxConcurrency
});
}).then(() => {
return facesToUpdate;
});
}).then((facesToUpdate) => {
const total = facesToUpdate.length;
let remaining = total,
processed = 0,
lastStatus = Date.now(),
targets = [];
for (let target in descriptors) {
targets.push({ id: target, descriptor: descriptors[target] });
}
return Promise.mapSeries(facesToUpdate, (face) => {
if (!(face.id in descriptors)) {
console.warn(`...attempt to compare distance with no descriptor for ${face.id}`);
return exists(dataPath).then((doesExist) => {
if (!doesExist) {
console.warn(`${dataPath} is missing!`);
return;
}
const faceDescriptor = descriptors[face.id];
descriptors[id] = JSON.parse(fs.readFileSync(dataPath));
});
});
}).then(() => {
const total = facesToUpdate.length;
let remaining = total,
processed = 0,
lastStatus = Date.now(),
targets = [];
return photoDB.sequelize.transaction((transaction) => {
for (let target in descriptors) {
targets.push({ id: target, descriptor: descriptors[target] });
}
return Promise.mapSeries(facesToUpdate, (face) => {
if (!(face.id in descriptors)) {
console.warn(`...attempt to compare distance with no descriptor for ${face.id}`);
return;
}
const faceDescriptor = descriptors[face.id];
return photoDB.sequelize.transaction((transaction) => {
return photoDB.sequelize.query(
"SELECT distance,face1Id,face2Id " +
"FROM facedistances " +
"WHERE face1Id=:id OR face2Id=:id " +
"ORDER BY face1Id ASC", {
replacements: {
id: face.id
},
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true,
transaction: transaction
}).then((distances) => {
return Promise.map(targets, (target) => {
/* Skip comparing to self */
if (target.id == face.id) {
@ -259,87 +293,66 @@ faceapi.nets.ssdMobilenetv1.loadFromDisk('./models')
return;
}
const index = distances.findIndex((distance) => {
return distance.face1Id == target.id || distance.face2Id == target.id
});
if (index != -1) {
/* A distance has already been calculated between face and target */
return;
}
const distance = faceapi.euclideanDistance(faceDescriptor, target.descriptor);
/* If the distance > 0.6, we don't want to store this in the DB */
if (distance > 0.6) {
return;
}
if (distance < 0.4) {
console.log(`Face ${face.id} and ${target.id} have a distance of: ${distance}`);
}
return photoDB.sequelize.query(
"SELECT distance " +
"FROM facedistances " +
"WHERE face1Id=:first AND face2Id=:second", {
"INSERT INTO facedistances (face1Id,face2Id,distance) " +
"VALUES (:first,:second,:distance)", {
replacements: {
first: Math.min(face.id, target.id),
second: Math.max(face.id, target.id)
second: Math.max(face.id, target.id),
distance: distance
},
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true,
transaction: transaction
}).then((results) => {
if (results.length) {
return;
}
const distance = faceapi.euclideanDistance(faceDescriptor, target.descriptor);
if (distance < 0.4) {
console.log(`Face ${face.id} and ${target.id} have a distance of: ${distance}`);
}
return photoDB.sequelize.query(
"INSERT INTO facedistances (face1Id, face2Id, distance) " +
"VALUES (:first, :second, :distance)", {
replacements: {
first: Math.min(face.id, target.id),
second: Math.max(face.id, target.id),
distance: distance
},
transaction: transaction
});
});
}, {
concurrency: maxConcurrency
}).then(() => {
return photoDB.sequelize.query(
"UPDATE faces SET lastComparedId=:lastId WHERE id=:id", {
replacements: {
lastId: maxId,
id: face.id
},
transaction: transaction
});
});
}).then(() => {
processed++;
const now = Date.now();
if (now - lastStatus > 5000) {
const rate = Math.round(10000 * (remaining - (total - processed)) / (now - lastStatus)) / 10,
eta = Math.round((total - processed) / rate);
lastStatus = now;
remaining = total - processed;
console.log(`Processing ${rate} faces per second. ${remaining} faces to be processed. ETA: ${eta}s`);
}
return photoDB.sequelize.query(
"UPDATE faces SET lastComparedId=:lastId WHERE id=:id", {
replacements: {
lastId: maxId,
id: face.id
},
transaction: transaction
});
});
}).then(() => {
processed++;
const now = Date.now();
if (now - lastStatus > 5000) {
const rate = Math.round(10000 * (remaining - (total - processed)) / (now - lastStatus)) / 10,
eta = Math.round((total - processed) / rate);
lastStatus = now;
remaining = total - processed;
console.log(`Processing ${rate} faces per second. ${remaining} faces to be processed. ETA: ${eta}s`);
}
});
});
});
}).then(() => {
console.log("Face detection scanning completed.");
}).catch((error) => {
console.error(error);
process.exit(-1);
});
}).then(() => {
console.log("Face detection scanning completed.");
}).catch((error) => {
console.error(error);
process.exit(-1);
});
/* TODO:
1. For each path / person, look up highest face confidence and tag
2. Use highest face and identity confidence for input into
https://github.com/justadudewhohacks/face-api.js#face-recognition-by-matching-descriptors
const labeledDescriptors = [
new faceapi.LabeledFaceDescriptors(
'obama',
[descriptorObama1, descriptorObama2]
),
new faceapi.LabeledFaceDescriptors(
'trump',
[descriptorTrump]
)
]
const faceMatcher = new faceapi.FaceMatcher(labeledDescriptors)
*/

View File

@ -4,6 +4,8 @@ process.env.TZ = "Etc/GMT";
require('@tensorflow/tfjs-node');
let photoDB = null;
const config = require("config"),
Promise = require("bluebird"),
{ exists, mkdir, unlink } = require("./lib/util"),
@ -11,7 +13,7 @@ const config = require("config"),
fs = require("fs"),
canvas = require("canvas");
const { Canvas, Image, ImageData } = canvas;
const { createCanvas, Canvas, Image, ImageData } = canvas;
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
@ -19,45 +21,179 @@ const maxConcurrency = require("os").cpus().length;
require("./console-line.js"); /* Monkey-patch console.log with line numbers */
faceapi.nets.ssdMobilenetv1.loadFromDisk('./models')
.then(() => {
console.log("ssdMobileNetv1 loaded.");
const picturesPath = config.get("picturesPath").replace(/\/$/, "") + "/",
faceData = picturesPath + "face-data/";
process.stdout.write("Loading DB.");
require("./db/photos").then(function(db) {
process.stdout.write("done\n");
photoDB = db;
}).then(() => {
console.log("DB connected.");
process.stdout.write("Loading models.");
return faceapi.nets.ssdMobilenetv1.loadFromDisk('./models');
}).then(() => {
process.stdout.write(".");
return faceapi.nets.faceLandmark68Net.loadFromDisk('./models');
}).then(() => {
console.log("landmark68 loaded.");
process.stdout.write(".");
return faceapi.nets.faceRecognitionNet.loadFromDisk('./models');
}).then(async () => {
console.log("faceRecognitionNet loaded.");
let faces = [];
for (let a = 2; a < process.argv.length; a++) {
const file = process.argv[a];
process.stdout.write(`Loading ${file}...`);
const image = await canvas.loadImage(file),
detectors = await faceapi.detectAllFaces(image,
new faceapi.SsdMobilenetv1Options({
minConfidence: 0.8
process.stdout.write(".done\n");
if (process.argv[0].match(/node/)) {
process.argv.shift(); /* node */
}
process.argv.shift(); /* script name */
return Promise.resolve().then(() => {
console.log(process.argv.length);
if (process.argv.length != 0) {
return process.argv;
}
/* If no parameters provided, scan all faces to create image crops */
return photoDB.sequelize.query("SELECT id FROM faces ORDER BY id ASC", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((results) => {
return results.map(result => result.id);
});
});
}).then((args) => {
const faces = [];
return Promise.map(args, (arg) => {
const file = arg,
id = parseInt(arg);
let loader;
if (id == file) {
/* This is a face id */
console.log(`Looking up face-id ${id}...`);
loader = photoDB.sequelize.query(
"SELECT albums.path,photos.filename,photos.width,photos.height,faces.* " +
"FROM faces,photos,albums " +
"WHERE photos.id=faces.photoId " +
"AND albums.id=photos.albumId " +
"AND faces.id=:id", {
replacements: {
id: id
},
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((results) => {
if (results.length != 1) {
console.error(`...error. No face-id found: ${id}.\n`);
process.exit(-1);
}
const photo = results[0];
console.log(`...loading ${photo.filename}`);
const file = photo.path + photo.filename;
return canvas.loadImage(picturesPath + file).then(async (image) => {
const detectors = [ {
detection: {
_box: {
_x: photo.left * photo.width,
_y: photo.top * photo.height,
_width: (photo.right - photo.left) * photo.width,
_height: (photo.bottom - photo.top) * photo.height,
}
},
descriptor: JSON.parse(fs.readFileSync(faceData + (id % 100) + "/" + id + "-data.json"))
} ];
return [ file, image, detectors ];
});
});
} else {
/* This is a file */
console.log(`Loading ${file}...`);
id = undefined;
loader = canvas.loadImage(picturesPath + file).then(async (image) => {
const detectors = await faceapi.detectAllFaces(image,
new faceapi.SsdMobilenetv1Options({
minConfidence: 0.8
})
).withFaceLandmarks().withFaceDescriptors();
detectors.forEach((detector) => {
const data = [];
/* Confert from sparse object to dense array */
for (let i = 0; i < 128; i++) {
data.push(detector.descriptor[i]);
}
detector.descriptor = data;
});
return [ file, image, detectors ];
});
}
return loader.spread((filepath, image, detectors) => {
process.stdout.write(`${detectors.length} faces.\n`);
return Promise.map(detectors, (face, index) => {
faces.push({
filepath: filepath,
index: index,
descriptor: face.descriptor
})
).withFaceLandmarks().withFaceDescriptors();
process.stdout.write(`${detectors.length} faces.\n`);
detectors.forEach((face, index) => {
faces.push({
file: file,
index: index,
descriptor: face.descriptor
/* If this is a face-id, output the -original.png
* meta-data file */
if (!id) {
return;
}
const path = "face-data/" + (id % 100),
target = `${path}/${id}-original.png`,
box = face.detection._box,
aspect = box._width / box._height,
dx = (aspect > 1.0) ? 200 : (200 * aspect),
dy = (aspect < 1.0) ? 200 : (200 / aspect);
return exists(target).then((doesExist) => {
if (doesExist) {
console.log(`...${target} already exists.`);
return;
}
const canvas = createCanvas(200, 200),
ctx = canvas.getContext('2d');
ctx.fillStyle = "rgba(0, 0, 0, 0)";
ctx.fillRect(0, 0, 200, 200);
ctx.drawImage(image, box._x, box._y, box._width, box._height,
Math.floor((200 - dx) * 0.5),
Math.floor((200 - dy) * 0.5), dx, dy);
console.log(`...writing to ${target}.`);
return mkdir(path).then(() => {
fs.writeFileSync(picturesPath + target, canvas.toBuffer("image/png", {
quality: 0.95,
chromaSubsampling: false
}));
});
});
});
});
}, {
concurrency: maxConcurrency
}).then(() => {
console.log("Face detection scanning completed.");
faces.forEach((a, i) => {
faces.forEach((b, j) => {
if (i == j) {
return;
}
const distance = faceapi.euclideanDistance(a.descriptor, b.descriptor);
if (distance < 0.4) {
console.log(`${a.filepath}.${a.index} is similar to ${b.filepath}.${b.index}: ${distance}`);
}
})
});
}
for (let i = 0; i < faces.length; i++) {
for (let j = 0; j < faces.length; j++) {
const a = faces[i], b = faces[j];
const distance = faceapi.euclideanDistance(a.descriptor, b.descriptor);
console.log(`${a.file}.${a.index} to ${b.file}.${b.index} = ${distance}`);
}
}
}).then(() => {
console.log("Face detection scanning completed.");
});
}).catch((error) => {
console.error(error);
process.exit(-1);