Added start of clustering routine
Signed-off-by: James Ketrenos <james_git@ketrenos.com>
This commit is contained in:
parent
836b27ac54
commit
7a960c5f1f
121
server/cluster.py
Normal file
121
server/cluster.py
Normal file
@ -0,0 +1,121 @@
|
||||
import sys
|
||||
import json
|
||||
import os
|
||||
import piexif
|
||||
import sqlite3
|
||||
from sqlite3 import Error
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
from deepface import DeepFace
|
||||
from retinaface import RetinaFace
|
||||
|
||||
class NpEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, np.integer):
|
||||
return int(obj)
|
||||
if isinstance(obj, np.floating):
|
||||
return float(obj)
|
||||
if isinstance(obj, np.ndarray):
|
||||
return obj.tolist()
|
||||
|
||||
model = DeepFace.build_model('ArcFace')
|
||||
input_shape = DeepFace.functions.find_input_shape(model)
|
||||
|
||||
def create_connection(db_file):
|
||||
""" create a database connection to the SQLite database
|
||||
specified by db_file
|
||||
:param db_file: database file
|
||||
:return: Connection object or None
|
||||
"""
|
||||
conn = None
|
||||
try:
|
||||
conn = sqlite3.connect(db_file)
|
||||
except Error as e:
|
||||
print(e)
|
||||
|
||||
return conn
|
||||
|
||||
def create_face(conn, face):
|
||||
"""
|
||||
Create a new face in the faces table
|
||||
:param conn:
|
||||
:param face:
|
||||
:return: face id
|
||||
"""
|
||||
sql = '''
|
||||
INSERT INTO faces(photoId,scanVersion,faceConfidence,top,left,bottom,right)
|
||||
VALUES(?,?,?,?,?,?,?)
|
||||
'''
|
||||
cur = conn.cursor()
|
||||
cur.execute(sql, (
|
||||
face['photoId'],
|
||||
face['scanVersion'],
|
||||
face['faceConfidence'],
|
||||
face['top'],
|
||||
face['left'],
|
||||
face['bottom'],
|
||||
face['right']
|
||||
))
|
||||
conn.commit()
|
||||
return cur.lastrowid
|
||||
|
||||
def create_face_descriptor(conn, faceId, descriptor):
|
||||
"""
|
||||
Create a new face in the faces table
|
||||
:param conn:
|
||||
:param faceId:
|
||||
:param descriptor:
|
||||
:return: descriptor id
|
||||
"""
|
||||
sql = '''
|
||||
INSERT INTO facedescriptors(faceId,model,descriptors)
|
||||
VALUES(?,?,?)
|
||||
'''
|
||||
cur = conn.cursor()
|
||||
cur.execute(sql, (
|
||||
faceId,
|
||||
descriptor['model'],
|
||||
np.array(descriptor['descriptors'])
|
||||
))
|
||||
conn.commit()
|
||||
return cur.lastrowid
|
||||
|
||||
def update_face_count(conn, photoId, faces):
|
||||
"""
|
||||
Update the number of faces that have been matched on a photo
|
||||
:param conn:
|
||||
:param photoId:
|
||||
:param faces:
|
||||
:return: None
|
||||
"""
|
||||
sql = '''
|
||||
UPDATE photos SET faces=? WHERE id=?
|
||||
'''
|
||||
cur = conn.cursor()
|
||||
cur.execute(sql, (faces, photoId))
|
||||
conn.commit()
|
||||
return None
|
||||
|
||||
base = '/pictures/'
|
||||
conn = create_connection('../db/photos.db')
|
||||
faces = {}
|
||||
identities = {}
|
||||
|
||||
with conn:
|
||||
cur = conn.cursor()
|
||||
res = cur.execute('''
|
||||
SELECT faces.id,facedescriptors.descriptors
|
||||
FROM faces
|
||||
LEFT JOIN facedescriptors ON (faces.descriptorId=facedescriptors.id)
|
||||
WHERE faces.identityId IS null
|
||||
''')
|
||||
for row in res.fetchall():
|
||||
id, descriptors = row
|
||||
if faces[id] is None:
|
||||
face = {}
|
||||
faces[id] = face
|
||||
else:
|
||||
face = faces[id]
|
||||
face['descriptors'] = descriptors
|
||||
|
||||
# update_face_count(conn, photoId, len(faces))
|
@ -99,10 +99,22 @@ function init() {
|
||||
lastName: Sequelize.STRING,
|
||||
firstName: Sequelize.STRING,
|
||||
middleName: Sequelize.STRING,
|
||||
name: {
|
||||
displayName: {
|
||||
type: Sequelize.STRING,
|
||||
allowNull: false
|
||||
}
|
||||
},
|
||||
descriptors: Sequelize.BLOB /* average of all faces mapped to this */
|
||||
}, {
|
||||
timestamps: false
|
||||
});
|
||||
|
||||
const FaceDescriptor = db.sequelize.define('facedescriptor', {
|
||||
id: {
|
||||
type: Sequelize.INTEGER,
|
||||
primaryKey: true,
|
||||
autoIncrement: true
|
||||
},
|
||||
descriptors: Sequelize.BLOB
|
||||
}, {
|
||||
timestamps: false
|
||||
});
|
||||
@ -121,6 +133,33 @@ function init() {
|
||||
key: 'id',
|
||||
}
|
||||
},
|
||||
scanVersion: {
|
||||
type: Sequelize.INTEGER,
|
||||
/*
|
||||
* 0 - original scan type
|
||||
* 1 - Retinaface w/ 0.25% face margin
|
||||
*/
|
||||
defaultValue: 0
|
||||
},
|
||||
|
||||
top: Sequelize.FLOAT, /* 0..1 * photoId.height */
|
||||
left: Sequelize.FLOAT, /* 0..1 * photoId.width */
|
||||
bottom: Sequelize.FLOAT, /* 0..1 * photoId.height */
|
||||
right: Sequelize.FLOAT, /* 0..1 * photoId.width */
|
||||
faceConfidence: { /* How confident that this is a face? */
|
||||
type: Sequelize.DOUBLE,
|
||||
defaultValue: 0
|
||||
},
|
||||
|
||||
descriptorId: {
|
||||
type: Sequelize.INTEGER,
|
||||
allowNull: true,
|
||||
references: {
|
||||
model: FaceDescriptor,
|
||||
key: 'id',
|
||||
}
|
||||
},
|
||||
|
||||
identityId: {
|
||||
type: Sequelize.INTEGER,
|
||||
allowNull: true,
|
||||
@ -129,30 +168,11 @@ function init() {
|
||||
key: 'id',
|
||||
}
|
||||
},
|
||||
scanVersion: {
|
||||
type: Sequelize.INTEGER,
|
||||
/*
|
||||
* 0 - original scan type
|
||||
* 1 - Retinaface w/ 0.25% face increase
|
||||
*/
|
||||
defaultValue: 0
|
||||
},
|
||||
identityDistance: { /* How far are markers from identity match? */
|
||||
type: Sequelize.DOUBLE,
|
||||
defaultValue: -1.0
|
||||
},
|
||||
faceConfidence: { /* How confident that this is a face? */
|
||||
type: Sequelize.DOUBLE,
|
||||
defaultValue: 0
|
||||
},
|
||||
|
||||
lastComparedId: {
|
||||
type: Sequelize.INTEGER,
|
||||
allowNull: true,
|
||||
},
|
||||
top: Sequelize.FLOAT, /* 0..1 * photoId.height */
|
||||
left: Sequelize.FLOAT, /* 0..1 * photoId.width */
|
||||
bottom: Sequelize.FLOAT, /* 0..1 * photoId.height */
|
||||
right: Sequelize.FLOAT, /* 0..1 * photoId.width */
|
||||
}
|
||||
}, {
|
||||
timestamps: false,
|
||||
classMethods: {
|
||||
@ -162,42 +182,32 @@ function init() {
|
||||
}
|
||||
});
|
||||
|
||||
const FaceDescriptor = db.sequelize.define('facedescriptor', {
|
||||
faceId: {
|
||||
type: Sequelize.INTEGER,
|
||||
primaryKey: true,
|
||||
references: {
|
||||
model: Face,
|
||||
key: 'id',
|
||||
}
|
||||
},
|
||||
model: {
|
||||
type: Sequelize.STRING,
|
||||
defaultValue: ""
|
||||
},
|
||||
descriptors: Sequelize.BLOB
|
||||
}, {
|
||||
timestamps: false
|
||||
});
|
||||
|
||||
const FaceDistances = db.sequelize.define('facedistance', {
|
||||
face1Id: {
|
||||
descriptor1Id: {
|
||||
type: Sequelize.INTEGER,
|
||||
allowNull: false,
|
||||
references: {
|
||||
model: Face,
|
||||
model: FaceDescriptor,
|
||||
key: 'id',
|
||||
}
|
||||
},
|
||||
face2Id: {
|
||||
descriptor2Id: {
|
||||
type: Sequelize.INTEGER,
|
||||
allowNull: false,
|
||||
references: {
|
||||
model: Face,
|
||||
model: FaceDescriptor,
|
||||
key: 'id',
|
||||
}
|
||||
},
|
||||
distance: {
|
||||
distanceCosine: {
|
||||
type: Sequelize.DOUBLE,
|
||||
defaultValue: 1.0
|
||||
},
|
||||
distanceEuclidian: {
|
||||
type: Sequelize.DOUBLE,
|
||||
defaultValue: 1.0
|
||||
},
|
||||
distanceEuclidianL2: {
|
||||
type: Sequelize.DOUBLE,
|
||||
defaultValue: 1.0
|
||||
}
|
||||
|
124
server/detect.py
124
server/detect.py
@ -8,6 +8,7 @@ from PIL import Image
|
||||
from deepface import DeepFace
|
||||
from retinaface import RetinaFace
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
class NpEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
@ -40,33 +41,48 @@ def alignment_procedure(img, left_eye, right_eye):
|
||||
"""
|
||||
dY = right_eye[1] - left_eye[1]
|
||||
dX = right_eye[0] - left_eye[0]
|
||||
rotation = -np.atan2(dY, dX)
|
||||
# cosRotation = np.cos(rotation)
|
||||
# sinRotation = np.sin(rotation)
|
||||
# eyeDistance = np.sqrt(dY * dY + dX * dX)
|
||||
# mid_x = left_eye[0] + 0.5 * dX
|
||||
# mid_y = left_eye[1] + 0.5 * dY
|
||||
# prime_x = mid_x * cosRotation - mid_y * sinRotation
|
||||
# prime_y = mid_y * cosRotation - mid_x * sinRotation
|
||||
radians = np.arctan2(dY, dX)
|
||||
rotation = 180 * radians / np.pi
|
||||
|
||||
if True:
|
||||
img = img.rotate(
|
||||
angle = rotation,
|
||||
resample = Image.BICUBIC,
|
||||
expand = True)
|
||||
|
||||
img = img.rotate(
|
||||
angle = np.pi * rotation,
|
||||
resample=Image.BICUBIC,
|
||||
expand=True)
|
||||
|
||||
return img
|
||||
|
||||
def extract_faces(img, threshold=0.9, model = None, allow_upscaling = True):
|
||||
faces = RetinaFace.detect_faces(img_path = img, threshold = threshold, model = model, allow_upscaling = allow_upscaling)
|
||||
#faces = DeepFace.detectFace(img_path = img, target_size = (224, 224), detector_backend = 'retinaface')
|
||||
def extract_faces(img, threshold=0.75, model = None, allow_upscaling = True):
|
||||
faces = RetinaFace.detect_faces(
|
||||
img_path = img,
|
||||
threshold = threshold,
|
||||
model = model,
|
||||
allow_upscaling = allow_upscaling)
|
||||
|
||||
# Re-implementation of 'extract_faces' with the addition of keeping a
|
||||
# copy of the face image for caching on disk
|
||||
if type(faces) == dict:
|
||||
print(f'Found {len(faces)} faces')
|
||||
i=1
|
||||
for key in faces:
|
||||
print(f'Processing face {i}/{len(faces)}')
|
||||
i+=1
|
||||
identity = faces[key]
|
||||
facial_area = identity["facial_area"]
|
||||
landmarks = identity["landmarks"]
|
||||
left_eye = landmarks["left_eye"]
|
||||
right_eye = landmarks["right_eye"]
|
||||
|
||||
if False: # Draw the face rectangle and eyes
|
||||
cv2.rectangle(img,
|
||||
(int(facial_area[0]), int(facial_area[1])),
|
||||
(int(facial_area[2]), int(facial_area[3])),
|
||||
(0, 0, 255), 2)
|
||||
cv2.circle(img, (int(left_eye[0]), int(left_eye[1])), 5, (255, 0, 0), 2)
|
||||
cv2.circle(img, (int(right_eye[0]), int(right_eye[1])), 5, (0, 255, 0), 2)
|
||||
|
||||
# Find center of face, then crop to square
|
||||
# of equal width and height
|
||||
width = facial_area[2] - facial_area[0]
|
||||
height = facial_area[3] - facial_area[1]
|
||||
x = facial_area[0] + width * 0.5
|
||||
@ -78,34 +94,25 @@ def extract_faces(img, threshold=0.9, model = None, allow_upscaling = True):
|
||||
else:
|
||||
width = height
|
||||
|
||||
landmarks = identity["landmarks"]
|
||||
left_eye = landmarks["left_eye"]
|
||||
right_eye = landmarks["right_eye"]
|
||||
nose = landmarks["nose"]
|
||||
#width *= 1.25
|
||||
#height *= 1.25
|
||||
|
||||
# translate the landmarks to be centered on array
|
||||
left_eye[0] -= x
|
||||
left_eye[1] -= y
|
||||
right_eye[0] -= x
|
||||
right_eye[1] -= y
|
||||
nose[0] -= x
|
||||
nose[1] -= y
|
||||
left = max(round(x - width * 0.5), 0)
|
||||
right = min(round(left + width), img.shape[1]) # Y is 1
|
||||
top = max(round(y - height * 0.5), 0)
|
||||
bottom = min(round(top + height), img.shape[0]) # X is 0
|
||||
|
||||
width *= 1.25
|
||||
height *= 1.25
|
||||
|
||||
left = max(round(x - width * 0.5), facial_area[0])
|
||||
right = min(round(left + width), facial_area[2])
|
||||
top = max(round(y - height * 0.5), facial_area[1])
|
||||
bottom = min(round(top + height), facial_area[3])
|
||||
left_eye[0] -= top
|
||||
left_eye[1] -= left
|
||||
right_eye[0] -= top
|
||||
right_eye[1] -= left
|
||||
|
||||
facial_img = img[top: bottom, left: right]
|
||||
|
||||
# Eye order is reversed as the routine does them backwards
|
||||
aligned = RetinaFace.postprocess.alignment_procedure(facial_img, right_eye, left_eye, nose)
|
||||
|
||||
image = Image.fromarray(aligned)
|
||||
image = image.resize(size = input_shape, resample = Image.LANCZOS)
|
||||
image = Image.fromarray(facial_img)
|
||||
image = alignment_procedure(image, right_eye, left_eye)
|
||||
#image = image.resize(size = input_shape, resample = Image.LANCZOS)
|
||||
resized = np.asarray(image)
|
||||
|
||||
identity['vector'] = DeepFace.represent(
|
||||
@ -115,6 +122,7 @@ def extract_faces(img, threshold=0.9, model = None, allow_upscaling = True):
|
||||
detector_backend = 'retinaface',
|
||||
enforce_detection = False)
|
||||
|
||||
print(img.shape)
|
||||
identity["face"] = {
|
||||
'top': facial_area[1] / img.shape[0],
|
||||
'left': facial_area[0] / img.shape[1],
|
||||
@ -122,7 +130,7 @@ def extract_faces(img, threshold=0.9, model = None, allow_upscaling = True):
|
||||
'right': facial_area[2] / img.shape[1]
|
||||
}
|
||||
|
||||
identity['image'] = resized #[:, :, ::-1]
|
||||
identity['image'] = Image.fromarray(resized)
|
||||
|
||||
return faces
|
||||
|
||||
@ -167,7 +175,7 @@ def create_face(conn, face):
|
||||
conn.commit()
|
||||
return cur.lastrowid
|
||||
|
||||
def create_face_descriptor(conn, faceId, descriptor):
|
||||
def create_face_descriptor(conn, face):
|
||||
"""
|
||||
Create a new face in the faces table
|
||||
:param conn:
|
||||
@ -176,15 +184,11 @@ def create_face_descriptor(conn, faceId, descriptor):
|
||||
:return: descriptor id
|
||||
"""
|
||||
sql = '''
|
||||
INSERT INTO facedescriptors(faceId,model,descriptors)
|
||||
VALUES(?,?,?)
|
||||
INSERT INTO facedescriptors(descriptors)
|
||||
VALUES(?)
|
||||
'''
|
||||
cur = conn.cursor()
|
||||
cur.execute(sql, (
|
||||
faceId,
|
||||
descriptor['model'],
|
||||
np.array(descriptor['descriptors'])
|
||||
))
|
||||
cur.execute(sql, (np.array(face['vector']),))
|
||||
conn.commit()
|
||||
return cur.lastrowid
|
||||
|
||||
@ -204,23 +208,26 @@ def update_face_count(conn, photoId, faces):
|
||||
conn.commit()
|
||||
return None
|
||||
|
||||
|
||||
base = '/pictures/'
|
||||
conn = create_connection('../db/photos.db')
|
||||
with conn:
|
||||
cur = conn.cursor()
|
||||
for row in cur.execute('''
|
||||
res = cur.execute('''
|
||||
SELECT photos.id,photos.faces,albums.path,photos.filename FROM photos
|
||||
LEFT JOIN albums ON (albums.id=photos.albumId)
|
||||
WHERE photos.faces=-1
|
||||
'''):
|
||||
''')
|
||||
rows = res.fetchall()
|
||||
count = len(rows)
|
||||
i=1
|
||||
for row in rows:
|
||||
photoId, photoFaces, albumPath, photoFilename = row
|
||||
img_path = f'{base}{albumPath}{photoFilename}'
|
||||
print(f'Processing {img_path}')
|
||||
print(f'Processing {i}/{count}: {img_path}')
|
||||
i+=1
|
||||
img = Image.open(img_path)
|
||||
img = img.convert()
|
||||
img = np.asarray(img)
|
||||
print(img.shape)
|
||||
faces = extract_faces(img)
|
||||
if faces is None:
|
||||
update_face_count(conn, photoId, 0)
|
||||
@ -228,7 +235,7 @@ with conn:
|
||||
print(f'Handling {len(faces)} faces')
|
||||
for key in faces:
|
||||
face = faces[key]
|
||||
image = Image.fromarray(face['image'])
|
||||
image = face['image']
|
||||
|
||||
#face['analysis'] = DeepFace.analyze(img_path = img, actions = ['age', 'gender', 'race', 'emotion'], enforce_detection = False)
|
||||
#face['analysis'] = DeepFace.analyze(img, actions = ['emotion'])
|
||||
@ -240,6 +247,8 @@ with conn:
|
||||
data = {k: face[k] for k in set(list(face.keys())) - set(['image', 'facial_area', 'landmarks'])}
|
||||
json_str = json.dumps(data, ensure_ascii=False, indent=2, cls=NpEncoder)
|
||||
|
||||
faceDescriptorId = create_face_descriptor(conn, face)
|
||||
|
||||
faceId = create_face(conn, {
|
||||
'photoId': photoId,
|
||||
'scanVersion': face['version'],
|
||||
@ -248,14 +257,10 @@ with conn:
|
||||
'left': face['face']['left'],
|
||||
'bottom': face['face']['bottom'],
|
||||
'right': face['face']['right'],
|
||||
'descriptorId': faceDescriptorId,
|
||||
})
|
||||
|
||||
faceDescriptorId = create_face_descriptor(conn, faceId, {
|
||||
'model': 'RetinaFace',
|
||||
'descriptors': face['vector']
|
||||
})
|
||||
|
||||
path = f'faces/{faceId % 100}'
|
||||
path = f'faces/{faceId % 10}'
|
||||
try:
|
||||
os.mkdir(path)
|
||||
except FileExistsError:
|
||||
@ -274,6 +279,7 @@ with conn:
|
||||
#print(df.head())
|
||||
|
||||
update_face_count(conn, photoId, len(faces))
|
||||
exit(0)
|
||||
|
||||
#img2_path = sys.argv[2]
|
||||
#print("image 1: ", img1_path);
|
||||
|
Loading…
x
Reference in New Issue
Block a user