ketr.photos/server/face-recognizer.js
James Ketrenos 5a91c89730 Remove all use of spread
Signed-off-by: James Ketrenos <james_git@ketrenos.com>
2023-01-12 15:41:55 -08:00

405 lines
13 KiB
JavaScript

/*
* Face recognition:
* 1. For each photo, extract all faces. Store face rectangles.
* face_id unique
* photo_id foreign key
* top left bottom right
* identity_id
* distance (0 == truth; manually assigned identity)
* 2. For each face_id, create:
* /${picturesPath}face-data/${face_id % 100}/
* ${face_id}-normalized
* ${face_id}-original
* ${face_id}-data
*/
"use strict";
process.env.TZ = "Etc/GMT";
console.log("Loading face-recognizer");
require('@tensorflow/tfjs-node');
const config = require("config"),
Promise = require("bluebird"),
{ exists, mkdir, unlink } = require("./lib/util"),
faceapi = require("face-api.js"),
fs = require("fs"),
canvas = require("canvas");
const { createCanvas, Canvas, Image, ImageData } = canvas;
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
const maxConcurrency = require("os").cpus().length;
require("./console-line.js"); /* Monkey-patch console.log with line numbers */
const picturesPath = config.get("picturesPath").replace(/\/$/, "") + "/",
facesPath = config.get("facesPath").replace(/\/$/, "") + "/";
let photoDB = null;
console.log("Loading pictures out of: " + picturesPath);
function alignFromLandmarks(image, landmarks) {
const faceMargin = 0.3,
width = 256, height = 256,
dY = landmarks._positions[45]._y - landmarks._positions[36]._y,
dX = landmarks._positions[45]._x - landmarks._positions[36]._x,
mid = {
x: landmarks._positions[36]._x + 0.5 * dX,
y: landmarks._positions[36]._y + 0.5 * dY
},
rotation = -Math.atan2(dY, dX),
cosRotation = Math.cos(rotation),
sinRotation = Math.sin(rotation),
eyeDistance = Math.sqrt(dY * dY + dX * dX),
scale = width * (1.0 - 2. * faceMargin) / eyeDistance,
canvas = createCanvas(width, height),
ctx = canvas.getContext("2d");
const prime = {
x: mid.x * cosRotation - mid.y * sinRotation,
y: mid.y * cosRotation + mid.x * sinRotation
};
mid.x = prime.x;
mid.y = prime.y;
ctx.translate(
0.5 * width - mid.x * scale,
0.5 * height - (height * (0.5 - faceMargin)) - mid.y * scale);
ctx.rotate(rotation);
ctx.scale(scale, scale);
ctx.drawImage(image, 0, 0);
/*
ctx.strokeStyle = "red";
ctx.strokeWidth = "1";
ctx.beginPath();
landmarks._positions.forEach((point, index) => {
if (index == 0) {
ctx.moveTo(point._x, point._y);
} else {
ctx.lineTo(point._x, point._y);
}
});
ctx.stroke();
*/
return canvas;
}
process.stdout.write("Loading DB.");
require("./db/photos").then(function(db) {
process.stdout.write("done\n");
photoDB = db;
}).then(() => {
console.log("DB connected.");
process.stdout.write("Loading models.");
return faceapi.nets.ssdMobilenetv1.loadFromDisk('./models');
}).then(() => {
process.stdout.write(".");
return faceapi.nets.faceLandmark68Net.loadFromDisk('./models');
}).then(() => {
process.stdout.write(".");
return faceapi.nets.faceRecognitionNet.loadFromDisk('./models');
}).then(() => {
console.log("Beginning face detection scanning.");
return photoDB.sequelize.query("SELECT photos.id,photos.filename,photos.width,photos.height,albums.path " +
"FROM photos " +
"LEFT JOIN albums ON (albums.id=photos.albumId) " +
"WHERE faces=-1 AND photos.duplicate=0 AND photos.deleted=0 ORDER BY albums.path,photos.filename", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
});
}).then((needToScan) => {
const total = needToScan.length;
let remaining = total,
processed = 0,
lastStatus = Date.now();
console.log(`${needToScan.length} photos have not had faces scanned.`);
return Promise.map(needToScan, (photo) => {
const photoPath = photo.path + photo.filename;
console.log(`Processing ${photoPath}...`);
/* Remove any existing face data for this photo */
return photoDB.sequelize.query("SELECT id FROM faces WHERE photoId=:id", {
replacements: photo,
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((faces) => {
/* For each face-id, remove any face-data files, and then remove all the entries
* from the DB */
return Promise.map(faces, (face) => {
return Promise.map([ "-data.json", "-original.png" ], (suffix) => {
const id = face.id,
dataPath = facesPath + (id % 100) + "/" + id + suffix;
return exists(dataPath).then((result) => {
if (result) {
console.log(`...removing ${dataPath}`);
return unlink(dataPath);
}
});
});
}).then(() => {
return photoDB.sequelize.query("DELETE FROM faces WHERE photoId=:id", {
replacements: photo,
});
});
}).then(async () => {
/* Process image for faces data */
const image = await canvas.loadImage(picturesPath + photoPath);
const detections = await faceapi.detectAllFaces(image,
new faceapi.SsdMobilenetv1Options({
minConfidence: 0.9
})
).withFaceLandmarks();
if (detections.length > 0) {
console.log(`...${detections.length} faces identified in ${photoPath}.`);
}
return Promise.map(detections, async (face) => {
const detection = face.detection,
canvas = alignFromLandmarks(image, face.landmarks);
face.descriptor = await faceapi.computeFaceDescriptor(canvas);
const width = detection._box._width,
height = detection._box._height,
replacements = {
id: photo.id,
top: detection._box._y / detection._imageDims.height,
left: detection._box._x / detection._imageDims.width,
bottom: (detection._box._y + height) / detection._imageDims.height,
right: (detection._box._x + width) / detection._imageDims.width,
faceConfidence: detection._score
};
return photoDB.sequelize.query("INSERT INTO faces (photoId,top,left,bottom,right,faceConfidence) " +
"VALUES (:id,:top,:left,:bottom,:right,:faceConfidence)", {
replacements: replacements
}).then(([ results, metadata ]) => {
return metadata.lastID;
}).then((id) => {
const path = facesPath + (id % 100);
return mkdir(path).then(() => {
const dataPath = `${path}/${id}-data.json`, data = [];
console.log(`...writing descriptor data to ${dataPath}...`);
/* Confert from sparse object to dense array */
for (let i = 0; i < 128; i++) {
data.push(face.descriptor[i]);
}
fs.writeFileSync(dataPath, JSON.stringify(data));
}).then(() => {
const target = `${path}/${id}-original.png`;
console.log(`...writing aligned face crop to ${target}.`);
fs.writeFileSync(target, canvas.toBuffer("image/png", {
quality: 0.95,
chromaSubsampling: false
}));
}).catch((error) => {
console.error(error);
process.exit(-1);
});
});
}).then(() => {
return photoDB.sequelize.query("UPDATE photos SET faces=:faces WHERE id=:id", {
replacements: {
id: photo.id,
faces: detections.length
},
});
});
}).catch((error) => {
console.log(error);
console.warn("Skipping out on image " + photoPath + " and marking to 0 faces to prevent future scanning.");
return photoDB.sequelize.query("UPDATE photos SET faces=:faces WHERE id=:id", {
replacements: {
id: photo.id,
faces: 0
},
});
}).then(() => {
processed++;
const now = Date.now();
if (now - lastStatus > 5000) {
const rate = Math.round(10000 * (remaining - (total - processed)) / (now - lastStatus)) / 10,
eta = Math.round((total - processed) / rate);
lastStatus = now;
remaining = total - processed;
console.log(`Processing ${rate} images per second. ${remaining} images to be processed. ETA: ${eta}s`);
}
});
}, {
concurrency: maxConcurrency
});
}).then(() => {
console.log("Looking for face distances that need to be updated...");
let maxId;
return photoDB.sequelize.query("SELECT faces.id FROM faces ORDER BY faces.id DESC LIMIT 1", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((results) => {
if (!results.length) {
console.log("...no faces exist yet to generate distances.");
maxId = 0;
return [];
}
maxId = results[0].id;
return photoDB.sequelize.query(
"SELECT faces.id,faces.lastComparedId " +
"FROM faces INNER JOIN photos ON photos.duplicate=0 AND photos.deleted=0 AND photos.id=faces.photoId " +
"WHERE faces.lastComparedId<:maxId OR faces.lastComparedId IS NULL " +
"ORDER BY faces.id ASC", {
replacements: {
maxId: maxId
},
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
});
}).then((facesToUpdate) => {
console.log(`...${facesToUpdate.length} faces need distances updated.`);
console.log("---- run scanner/scanner !! ---");
return [];
if (facesToUpdate.length == 0) {
return facesToUpdate;
}
const descriptors = {};
return photoDB.sequelize.query(
"SELECT id FROM faces ORDER BY id ASC", {
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true
}).then((allFaces) => {
console.log(`...reading ${allFaces.length} descriptors...`);
return Promise.map(allFaces, (face) => {
const id = face.id,
dataPath = facesPath + "/" + (id % 100) + "/" + id + "-data.json";
if (id in descriptors) {
return;
}
return exists(dataPath).then((doesExist) => {
if (!doesExist) {
console.warn(`${dataPath} is missing!`);
return;
}
descriptors[id] = JSON.parse(fs.readFileSync(dataPath));
});
});
}).then(() => {
const total = facesToUpdate.length;
let remaining = total,
processed = 0,
lastStatus = Date.now(),
targets = [];
for (let target in descriptors) {
targets.push({ id: target, descriptor: descriptors[target] });
}
return Promise.mapSeries(facesToUpdate, (face) => {
if (!(face.id in descriptors)) {
console.warn(`...attempt to compare distance with no descriptor for ${face.id}`);
return;
}
const faceDescriptor = descriptors[face.id];
return photoDB.sequelize.transaction((transaction) => {
return photoDB.sequelize.query(
"SELECT distance,face1Id,face2Id " +
"FROM facedistances " +
"WHERE face1Id=:id OR face2Id=:id " +
"ORDER BY face1Id ASC", {
replacements: {
id: face.id
},
type: photoDB.sequelize.QueryTypes.SELECT,
raw: true,
transaction: transaction
}).then((distances) => {
return Promise.map(targets, (target) => {
/* Skip comparing to self */
if (target.id == face.id) {
return;
}
/* Only compare against newer faces */
if (face.lastComparedId && target.id <= face.lastComparedId) {
return;
}
const index = distances.findIndex((distance) => {
return distance.face1Id == target.id || distance.face2Id == target.id
});
if (index != -1) {
/* A distance has already been calculated between face and target */
return;
}
const distance = faceapi.euclideanDistance(faceDescriptor, target.descriptor);
/* If the distance > 0.6, we don't want to store this in the DB */
if (distance > 0.6) {
return;
}
if (distance < 0.4) {
process.stdout.write(".");
// console.log(`Face ${face.id} and ${target.id} have a distance of: ${distance}`);
}
return photoDB.sequelize.query(
"INSERT INTO facedistances (face1Id,face2Id,distance) " +
"VALUES (:first,:second,:distance)", {
replacements: {
first: Math.min(face.id, target.id),
second: Math.max(face.id, target.id),
distance: distance
},
transaction: transaction
});
}, {
concurrency: maxConcurrency
});
}).then(() => {
return photoDB.sequelize.query(
"UPDATE faces SET lastComparedId=:lastId WHERE id=:id", {
replacements: {
lastId: maxId,
id: face.id
},
transaction: transaction
});
});
}).then(() => {
processed++;
const now = Date.now();
if (now - lastStatus > 5000) {
const rate = Math.round(10000 * (remaining - (total - processed)) / (now - lastStatus)) / 10,
eta = Math.round((total - processed) / rate);
lastStatus = now;
remaining = total - processed;
console.log(`\nProcessing ${rate} faces per second. ${remaining} faces to be processed. ETA: ${eta}s`);
}
});
});
});
});
}).then(() => {
console.log("Face detection scanning completed.");
}).catch((error) => {
console.error(error);
process.exit(-1);
});