ketr.photos/server/cluster.py
2023-01-05 22:22:55 -08:00

226 lines
6.4 KiB
Python

import sys
import json
import os
import piexif
import sqlite3
from sqlite3 import Error
from PIL import Image
import numpy as np
from deepface import DeepFace
from retinaface import RetinaFace
sqlite3.register_adapter(np.array, lambda arr: arr.tobytes())
sqlite3.register_converter("array", np.frombuffer)
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
model = DeepFace.build_model('ArcFace')
input_shape = DeepFace.functions.find_input_shape(model)
def create_connection(db_file):
""" create a database connection to the SQLite database
specified by db_file
:param db_file: database file
:return: Connection object or None
"""
conn = None
try:
conn = sqlite3.connect(db_file)
except Error as e:
print(e)
return conn
def create_face(conn, face):
"""
Create a new face in the faces table
:param conn:
:param face:
:return: face id
"""
sql = '''
INSERT INTO faces(photoId,scanVersion,faceConfidence,top,left,bottom,right)
VALUES(?,?,?,?,?,?,?)
'''
cur = conn.cursor()
cur.execute(sql, (
face['photoId'],
face['scanVersion'],
face['faceConfidence'],
face['top'],
face['left'],
face['bottom'],
face['right']
))
conn.commit()
return cur.lastrowid
def create_face_descriptor(conn, faceId, descriptor):
"""
Create a new face in the faces table
:param conn:
:param faceId:
:param descriptor:
:return: descriptor id
"""
sql = '''
INSERT INTO facedescriptors(faceId,model,descriptors)
VALUES(?,?,?)
'''
cur = conn.cursor()
cur.execute(sql, (
faceId,
descriptor['model'],
np.array(descriptor['descriptors'])
))
conn.commit()
return cur.lastrowid
def update_face_count(conn, photoId, faces):
"""
Update the number of faces that have been matched on a photo
:param conn:
:param photoId:
:param faces:
:return: None
"""
sql = '''
UPDATE photos SET faces=? WHERE id=?
'''
cur = conn.cursor()
cur.execute(sql, (faces, photoId))
conn.commit()
return None
def findCosineDistance(source_representation, test_representation):
if type(source_representation) == list:
source_representation = np.array(source_representation)
if type(test_representation) == list:
test_representation = np.array(test_representation)
a = np.matmul(np.transpose(source_representation), test_representation)
b = np.sum(np.multiply(source_representation, source_representation))
c = np.sum(np.multiply(test_representation, test_representation))
return 1 - (a / (np.sqrt(b) * np.sqrt(c)))
def findEuclideanDistance(source_representation, test_representation):
if type(source_representation) == list:
source_representation = np.array(source_representation)
if type(test_representation) == list:
test_representation = np.array(test_representation)
euclidean_distance = source_representation - test_representation
euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
euclidean_distance = np.sqrt(euclidean_distance)
return euclidean_distance
def l2_normalize(x):
return x / np.sqrt(np.sum(np.multiply(x, x)))
base = '/pictures/'
conn = create_connection('../db/photos.db')
faces = {}
identities = []
with conn:
cur = conn.cursor()
res = cur.execute('''
SELECT faces.id,facedescriptors.descriptors,faces.faceConfidence,faces.photoId
FROM faces
JOIN facedescriptors ON (faces.descriptorId=facedescriptors.id)
WHERE faces.identityId IS null
''')
for row in res.fetchall():
id, descriptors, confidence, photoId = row
if id in faces:
face = faces[id]
else:
face = {
'id': id,
'scanned': False
}
faces[id] = face
face['confidence'] = confidence
face['photoId'] = photoId
face['descriptors'] = np.frombuffer(descriptors)
for key1 in faces:
face1 = faces[key1]
if face1['scanned'] == True:
continue
face1['scanned'] = True
for key2 in faces:
if key1 == key2:
continue
face2 = faces[key2]
if face2['scanned']:
continue
face = {
'between': (face1['id'], face2['id'])
}
face['distanceCosine'] = findCosineDistance(
face1['descriptors'],
face2['descriptors']
)
face['distanceEuclidian'] = findEuclideanDistance(
face1['descriptors'],
face2['descriptors']
)
face['distanceEuclidianL2'] = findEuclideanDistance(
l2_normalize(face1['descriptors']),
l2_normalize(face2['descriptors'])
)
face['scoring'] = 0
if face['distanceCosine'] < 0.65:
face['scoring'] += 1
if face['distanceEuclidian'] < 4.00:
face['scoring'] += 1
if face['distanceEuclidianL2'] < 1.055:
face['scoring'] += 1
if face['scoring'] == 3: # Same face!
if ('identity' in face1) and ('identity' in face2):
if face1['identity'] != face2['identity']:
# print(f'Identity mismatch between {key1}({face1["confidence"]}) and {key2}({face2["confidence"]})')
continue
elif 'identity' in face1:
face2['identity'] = face1['identity']
face1['identity']['members'].append(face)
elif 'identity' in face2:
face1['identity'] = face2['identity']
face2['identity']['members'].append(face)
else:
# print(f'Creating new identity {len(identities)} {face["between"]}')
identity = {
'members': [],
}
face1['identity'] = face2['identity'] = identity
identity['members'].append(face)
identities.append(identity)
for idx, identity in enumerate(identities):
count = len(identity['members'])
print('<div>')
print(f'<div><b>Identity {idx} has {count}</b><br></div>')
print('<div>')
for member in identity['members']:
face1 = member['between'][0]
face2 = member['between'][1]
print('<div>')
print(f'<img src="faces/{face1%10}/{face1}.jpg"/>')
print(f'<img src="faces/{face2%10}/{face2}.jpg"/>')
print('</div>')
print(f'<div>Distance: {member["distanceCosine"]}, {member["distanceEuclidian"]}, {member["distanceEuclidianL2"]}</div>')
print('</div>')
print('</div>')
# update_face_count(conn, photoId, len(faces))