ketr.photos/server/face-recognizer.js
James Ketrenos 840178b6ae Identify which faces need to have distances calculated
Signed-off-by: James Ketrenos <james_gitlab@ketrenos.com>
2020-01-04 15:58:50 -08:00

193 lines
6.9 KiB
JavaScript

/*
* Face recognition:
* 1. For each photo, extract all faces. Store face rectangles.
* face_id unique
* photo_id foreign key
* top left bottom right
* identity_id
* distance (0 == truth; manually assigned identity)
* 2. For each face_id, create:
* /${picturesPath}face-data/${face_id % 100}/
* ${face_id}-normalized
* ${face_id}-original
* ${face_id}-data
*/
"use strict";
process.env.TZ = "Etc/GMT";
console.log("Loading face-recognizer");
require('@tensorflow/tfjs-node');
const config = require("config"),
Promise = require("bluebird"),
{ exists, mkdir, unlink } = require("./lib/util"),
faceapi = require("face-api.js"),
fs = require("fs"),
canvas = require("canvas");
const { Canvas, Image, ImageData } = canvas;
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
const maxConcurrency = require("os").cpus().length;
require("./console-line.js"); /* Monkey-patch console.log with line numbers */
const picturesPath = config.get("picturesPath").replace(/\/$/, "") + "/",
faceData = picturesPath + "face-data/";
let photoDB = null;
console.log("Loading pictures out of: " + picturesPath);
faceapi.nets.ssdMobilenetv1.loadFromDisk('./models')
.then(() => {
console.log("ssdMobileNetv1 loaded.");
return faceapi.nets.faceLandmark68Net.loadFromDisk('./models');
}).then(() => {
console.log("landmark68 loaded.");
return faceapi.nets.faceRecognitionNet.loadFromDisk('./models');
}).then(() => {
console.log("faceRecognitionNet loaded.");
return require("./db/photos").then(function(db) {
photoDB = db;
}).then(() => {
console.log("DB connected.");
}).then(() => {
console.log("Beginning face detection scanning.");
return photoDB.sequelize.query("SELECT photos.id,photos.filename,photos.width,photos.height,albums.path " +
"FROM photos " +
"LEFT JOIN albums ON (albums.id=photos.albumId) " +
"WHERE faces=-1 ORDER BY albums.path,photos.filename", {
type: photoDB.sequelize.QueryTypes.SELECT
}
).then((results) => {
console.log(`${results.length} photos have not had faces scanned.`);
return Promise.map(results, (photo) => {
const filePath = photo.path + photo.filename;
console.log(`Processing ${filePath}...`);
/* Remove any existing face data for this photo */
return photoDB.sequelize.query("SELECT id FROM faces WHERE photoId=:id", {
replacements: photo,
}).then((faces) => {
/* For each face-id, remove any face-data files, and then remove all the entries
* from the DB */
return Promise.map(faces, (face) => {
const id = face.id,
filePath = faceData + "/" + (id % 100) + "/" + id + "-data.json";
return exists(filePath).then((result) => {
if (result) {
console.log(`...removing ${filePath}`);
return unlink(filePath);
}
});
}).then(() => {
return photoDB.sequelize.query("DELETE FROM faces WHERE photoId=:id", {
replacements: photo,
});
}).then(async () => {
console.log("...loading image.");
const image = await canvas.loadImage(picturesPath + filePath);
console.log("...detecting faces.");
const detections = await faceapi.detectAllFaces(image).withFaceLandmarks().withFaceDescriptors();
console.log(`...${detections.length} faces identified.`);
return Promise.map(detections, (face, index) => {
const width = face.detection._box._width,
height = face.detection._box._height,
replacements = {
id: photo.id,
top: face.detection._box._y / photo.height,
left: face.detection._box._x / photo.width,
bottom: (face.detection._box._x + height) / photo.height,
right: (face.detection._box._x + width) / photo.width,
faceConfidence: face.detection._score
};
return photoDB.sequelize.query("INSERT INTO faces (photoId,top,left,bottom,right,faceConfidence) " +
"VALUES (:id,:top,:left,:bottom,:right,:faceConfidence)", {
replacements: replacements
}).catch(() => {
console.error(filePath, index);
console.error(JSON.stringify(face, null, 2));
console.error(JSON.stringify(replacements, null, 2));
process.exit(-1);
}).spread((results, metadata) => {
return metadata.lastID;
}).then((id) => {
console.log(`...DB id ${id}. Writing descriptor data...`);
const path = faceData + "/" + (id % 100);
return mkdir(path).then(() => {
const filePath = path + "/" + id + "-data.json",
data = [];
for (let i = 0; i < 128; i++) {
data.push(face.descriptor[i]);
}
fs.writeFileSync(filePath, JSON.stringify(data));
});
});
}).then(() => {
return photoDB.sequelize.query("UPDATE photos SET faces=:faces WHERE id=:id", {
replacements: {
id: photo.id,
faces: detections.length
},
});
});
});
});
}, {
concurrency: maxConcurrency
});
});
}).then(() => {
console.log("Looking for face distances that need to be updated.");
return photoDB.sequelize.query("SELECT id FROM faces ORDER BY id DESC LIMIT 1", {
type: photoDB.sequelize.QueryTypes.SELECT
}
}).then((results) => {
if (!results.length) {
console.log("No faces exist yet to generate distances.");
return;
}
const maxId = results[0].id;
return photoDB.sequelize.query("SELECT id FROM faces WHERE lastComparedId<:maxId OR lastComparedId IS NULL", {
replacements: {
maxId: maxId
},
type: photoDB.sequelize.QueryTypes.SELECT
}).then((results) => {
console.log(`${results.length} faces need to be updated.`);
});
});
}).then(() => {
console.log("Face detection scanning completed.");
}).catch((error) => {
console.error(error);
process.exit(-1);
});
});
/* TODO:
1. For each path / person, look up highest face confidence and tag
2. Use highest face and identity confidence for input into
https://github.com/justadudewhohacks/face-api.js#face-recognition-by-matching-descriptors
const labeledDescriptors = [
new faceapi.LabeledFaceDescriptors(
'obama',
[descriptorObama1, descriptorObama2]
),
new faceapi.LabeledFaceDescriptors(
'trump',
[descriptorTrump]
)
]
const faceMatcher = new faceapi.FaceMatcher(labeledDescriptors)
*/