ai-voicebot/docs/STEP_5B_IMPLEMENTATION.md

279 lines
8.9 KiB
Markdown

# Step 5B: Advanced Bot Management Implementation
This document describes the implementation of **Step 5B: Advanced Bot Management** as part of the server refactoring roadmap. This step enhances the existing voicebot system with multi-provider AI integration, personality-driven bot behavior, and conversation context management.
## Overview
Step 5B adds sophisticated bot management capabilities to the AI voicebot system, enabling:
- **Multi-Provider AI Integration**: Support for OpenAI, Anthropic, and local AI models
- **Personality System**: Configurable bot personalities with distinct traits and communication styles
- **Conversation Context Management**: Persistent conversation memory and context tracking
- **Enhanced Bot Orchestration**: Dynamic configuration and health monitoring
- **Backward Compatibility**: Full compatibility with existing bot implementations
## Architecture Components
### 1. AI Provider System (`ai_providers.py`)
The AI provider system provides a unified interface for multiple AI backends:
```python
# Abstract base class for all AI providers
class AIProvider:
async def generate_response(self, context: ConversationContext, message: str) -> str
async def stream_response(self, context: ConversationContext, message: str) -> AsyncIterator[str]
async def health_check(self) -> bool
# Concrete implementations
- OpenAIProvider: GPT-4, GPT-3.5-turbo integration
- AnthropicProvider: Claude integration
- LocalProvider: Local model integration (Ollama, etc.)
```
**Key Features:**
- Unified API across different AI providers
- Streaming response support
- Health monitoring and retry logic
- Conversation context integration
- Provider-specific configuration
### 2. Personality System (`personality_system.py`)
The personality system enables bots to have distinct behavioral characteristics:
```python
class BotPersonality:
traits: List[PersonalityTrait]
communication_style: CommunicationStyle
behavior_guidelines: List[str]
response_patterns: Dict[str, str]
```
**Available Personality Templates:**
- **Helpful Assistant**: Balanced, professional, and supportive
- **Technical Expert**: Detailed, precise, and thorough explanations
- **Creative Companion**: Imaginative, inspiring, and artistic
- **Business Advisor**: Strategic, professional, and results-oriented
- **Comedy Bot**: Humorous, casual, and entertaining
- **Wise Mentor**: Thoughtful, philosophical, and guidance-focused
**Key Features:**
- Template-based personality creation
- Configurable traits and communication styles
- System prompt generation for AI providers
- Dynamic personality switching
### 3. Conversation Context Management (`conversation_context.py`)
The context system provides persistent conversation memory:
```python
class ConversationMemory:
turns: List[ConversationTurn]
facts_learned: List[str]
emotional_context: Dict[str, Any]
persistent_context: Dict[str, Any]
```
**Key Features:**
- Turn-by-turn conversation tracking
- Fact extraction and learning
- Emotional context analysis
- Persistent storage with JSON serialization
- Context summarization for AI providers
### 4. Enhanced Bot Implementation (`bots/ai_chatbot.py`)
Example implementation of an enhanced bot using all Step 5B features:
```python
class EnhancedAIChatbot:
def __init__(self, session_name: str):
self.ai_provider = ai_provider_manager.create_provider(provider_type)
self.personality = personality_manager.create_personality_from_template(template)
self.conversation_context = context_manager.get_or_create_context(session_id)
```
**Key Features:**
- Multi-provider AI integration
- Personality-driven responses
- Conversation memory
- Health monitoring
- Runtime configuration
- Graceful fallback when AI features unavailable
## Configuration
### Environment Variables
Configure AI providers and bot behavior through environment variables:
```bash
# AI Provider Configuration
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key
# Bot-Specific Configuration
AI_CHATBOT_PERSONALITY=helpful_assistant
AI_CHATBOT_PROVIDER=openai
AI_CHATBOT_STREAMING=true
AI_CHATBOT_MEMORY=true
```
### Bot Configuration File (`enhanced_bot_configs.json`)
Define bot configurations in JSON format:
```json
{
"ai_chatbot": {
"personality": "helpful_assistant",
"ai_provider": "openai",
"streaming": true,
"memory_enabled": true,
"advanced_features": true
}
}
```
## Integration with Existing System
### Bot Orchestrator Enhancement
The enhanced orchestrator (`step_5b_integration_demo.py`) extends existing functionality:
```python
class EnhancedBotOrchestrator:
async def discover_enhanced_bots(self) -> Dict[str, Dict[str, Any]]
async def create_enhanced_bot_instance(self, bot_name: str, session_name: str)
async def monitor_bot_health(self) -> Dict[str, Any]
async def configure_bot_runtime(self, bot_name: str, new_config: Dict[str, Any])
```
### Backward Compatibility
- Existing bots continue to work without modification
- Enhanced features are opt-in through configuration
- Graceful degradation when AI providers unavailable
- Standard bot interface maintained
## Usage Examples
### Creating an Enhanced Bot
```python
# Create bot with specific configuration
bot_instance = await enhanced_orchestrator.create_enhanced_bot_instance(
"ai_chatbot",
"user_session_123"
)
# Bot automatically configured with:
# - OpenAI provider
# - Helpful assistant personality
# - Conversation memory enabled
# - Streaming responses
```
### Runtime Configuration
```python
# Switch bot personality at runtime
await enhanced_orchestrator.configure_bot_runtime("ai_chatbot", {
"personality": "technical_expert",
"ai_provider": "anthropic"
})
```
### Health Monitoring
```python
# Get comprehensive health report
health_report = await enhanced_orchestrator.monitor_bot_health()
# Includes:
# - AI provider status
# - Personality system health
# - Conversation context statistics
# - Individual bot instance status
```
## Implementation Status
### ✅ Completed Components
- **AI Provider System**: Multi-provider abstraction with OpenAI, Anthropic, Local support
- **Personality System**: 6 personality templates with configurable traits
- **Conversation Context**: Memory management with persistent storage
- **Enhanced Bot Example**: Fully functional AI chatbot implementation
- **Configuration System**: JSON-based bot configuration with environment variable support
- **Integration Demo**: Shows how to integrate with existing bot orchestrator
### 🔄 Integration Points
- **Bot Orchestrator Integration**: Enhance existing `bot_orchestrator.py` with new capabilities
- **Configuration Loading**: Integrate configuration system with bot discovery
- **Health Monitoring**: Add health endpoints to existing FastAPI server
### 📋 Next Steps
1. **Integration with Existing System**:
```python
# Modify bot_orchestrator.py to use enhanced features
from step_5b_integration_demo import enhanced_orchestrator
```
2. **Add Health Monitoring Endpoints**:
```python
# Add to main.py FastAPI server
@app.get("/api/bots/health")
async def get_bot_health():
return await enhanced_orchestrator.monitor_bot_health()
```
3. **Environment Setup**:
```bash
# Install additional dependencies
pip install openai anthropic aiohttp
# Configure API keys
export OPENAI_API_KEY=your_key
export ANTHROPIC_API_KEY=your_key
```
4. **Testing Enhanced Bots**:
```python
# Run integration demo
python voicebot/step_5b_integration_demo.py
```
## Performance Considerations
- **Streaming Responses**: Reduces perceived latency for long AI responses
- **Conversation Context**: JSON storage for persistence, in-memory for active sessions
- **Health Monitoring**: Cached health checks to avoid excessive API calls
- **Provider Fallback**: Graceful degradation when primary AI provider unavailable
## Security Considerations
- **API Key Management**: Secure storage of AI provider API keys
- **Rate Limiting**: Implement rate limiting for AI provider calls
- **Context Storage**: Secure storage of conversation data
- **Input Validation**: Sanitize user inputs before sending to AI providers
## Monitoring and Analytics
The system provides comprehensive monitoring:
- **Bot Usage Analytics**: Track which personalities and providers are most used
- **Health Trends**: Historical health data for system reliability
- **Conversation Statistics**: Metrics on conversation length and context usage
- **Performance Metrics**: Response times and success rates per provider
## Conclusion
Step 5B transforms the voicebot system from a simple bot orchestrator into a sophisticated AI-powered conversation platform. The modular design ensures that existing functionality remains intact while providing powerful new capabilities for AI-driven interactions.
The implementation provides a solid foundation for advanced conversational AI while maintaining the flexibility to add new providers, personalities, and features in the future.