1
0
intel-media-ffmpeg/README.md
James P. Ketrenos 4eabf2ccd3 Updated to latest xe-solutions
Signed-off-by: James P. Ketrenos <james.p.ketrenos@intel.com>
2020-10-15 14:47:56 -07:00

332 lines
8.6 KiB
Markdown

# Intel Media FFMPEG Transcode Container
This project hosts a container demonstrating the use of ffmpeg using GPU
offload for transcode operations.
For information on how the Dockerfile in this container is generated,
see [xe-solutions](https://gitlab.devtools.intel.com/vtt/sws/osgc/solutions/xe-solutions).
# To run pre-built container
The following will download the latest version of the container and run the
'test' entry point.
```bash
. SOLUTION
VIDEO=$(getent group video | sed -E 's,^video:[^:]*:([^:]*):.*$,\1,')
docker run --rm \
--group-add ${VIDEO} \
--volume $(pwd)/data:/data \
--device /dev/dri \
${REGISTRY_URL}/intel-compute-clinfo:latest-${OS_DISTRO}-${OS_RELEASE} \
test
```
NOTE: The VIDEO setup prior to running the container is needed if you are running
on a host OS that has a different video UID:GID mapping than the guest OS.
On some systems, you may also need to do the same for the RENDER group. See
`scripts/test-image.sh` for an example.
# Usage examples
Two step from zero-to-hero:
1. Download some test content
2. Transcode with a pre-built container
## Download content
The following will download the Blender TearsOfSteel video:
```bash
mkdir $(pwd)/data
wget -O $(pwd)/data/TearsOfSteel.mp4 \
http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/TearsOfSteel.mp4
```
## Transcode with a pre-built container
The following will transcode 'TearsOfSteal.mp4' from AVC (H.264) to a
5Mbps HEVC (H.265) stream using the GPU.
```bash
VIDEO=$(getent group video | sed -E 's,^video:[^:]*:([^:]*):.*$,\1,')
docker run \
--group-add ${VIDEO} \
--device=/dev/dri \
--volume $(pwd)/data:/data \
amr-registry.caas.intel.com/vtt-osgc/solutions/intel-media-ffmpeg:ubuntu-focal \
ffmpeg \
-hwaccel qsv \
-qsv_device ${QSV_DEVICE:-/dev/dri/renderD128} \
-c:v h264_qsv \
-i /data/TearsOfSteel.mp4 \
-c:v hevc_qsv \
-b:v 5M \
-y \
/data/TearsOfSteel-5M.mp4
```
# Getting the container
You can get the intel-media-ffmpeg container by either building it
yourself from the Dockerfile, or by pulling a pre-built image from
Intel's Harbor instance.
## Pull from Harbor
```bash
export OS_DISTRO=ubuntu
export PACKAGE_STREAM=focal
TAG=${OS_DISTRO}-${PACKAGE_STREAM}
docker pull amr-registry.caas.intel.com/vtt-osgc/solutions/intel-media-ffmpeg:${TAG}
docker tag amr-registry.caas.intel.com/vtt-osgc/solutions/intel-media-ffmpeg:${TAG} intel-media-ffmpeg
```
## Build Ubuntu container
NOTE: Ubuntu 19.10 focal packages have not been pushed to
repositories.intel.com yet. 'PACKAGE_REPOSITORY' is set to
osgc.jf.intel.com/internal below until the packages are published (by
end of November'19)
```bash
export OS_DISTRO=ubuntu
export OS_RELEASE=focal
export PACKAGE_STREAM=focal
export PACKAGE_REPOSITORY=https://osgc.jf.intel.com/internal
export TAG=test-build-${OS_DISTRO}-${PACKAGE_STREAM}-$(date +%Y%m%d)
scripts/build-dockerfile.sh
scripts/build-image.sh
```
## Build Red Hat container
```bash
export OS_DISTRO=rhel
export OS_RELEASE=8.0
export PACKAGE_STREAM=8.0
export PACKAGE_REPOSITORY=https://repositories.intel.com/graphics
export TAG=test-build-${OS_DISTRO}-${PACKAGE_STREAM}-$(date +%Y%m%d)
scripts/build-dockerfile.sh
scripts/build-image.sh
```
# Verify hardware access
```bash
TAG=${TAG:-latest}
VIDEO=$(getent group video | sed -E 's,^video:[^:]*:([^:]*):.*$,\1,')
docker run \
--group-add ${VIDEO} \
--rm \
--device=/dev/dri \
-e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
-it \
intel-media-ffmpeg:${TAG} \
info
```
The above will provide information about the software
in the container, as well as the detected Intel graphics
hardware.
If you are in a multicard environment, see Appendix A.
# Test hardware accelerated FFMPEG media operations
First download test content into ./data, then launch
the Docker container mounting that path to the /data
volume, running the 'test' command.
NOTE: The test media stream is currently hard coded to
expect the name AUD_WM_E.264 in the container.
```bash
TAG=${TAG:-latest}
mkdir $(pwd)/data
wget -O $(pwd)/data/AUD_MW_E.264 \
https://fate-suite.libav.org/h264-conformance/AUD_MW_E.264
VIDEO=$(getent group video | sed -E 's,^video:[^:]*:([^:]*):.*$,\1,')
docker run \
--group-add ${VIDEO} \
--rm \
--device=/dev/dri \
-e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
--volume $(pwd)/data:/data \
-it \
intel-media-ffmpeg:${TAG} \
test
```
The above will:
1. Download a test content file from fate-suite.libav.org into $(pwd)/data
2. Instantiate the 'intel-media-ffmpeg' container
3. Perfom the following tests:
1. decode AUD_MW_E.264 to AUD_MW.yuv
2. encode AUD_MW.yuv to AUD_MW_E.h264
3. transcode AUD_MW_E.264 to AUD_MW_E.hevc
4. transcode AUD_MW_E.264 to two streams at once, AUD_1N-5M.h264 and AUD_1N-4M60FPS.h264
Once completed, you can check the contents of $(pwd)/data for the following files:
```
AUD_MW_E.264
AUD_MW.yuv
AUD_MW_E.h264
AUD_MW_E.hevc
AUD_1N-5M.h264
AUD_1N-4M60FPS.h264
```
# Want a longer transcode test?
The following snippet will download the Blender video 'TearsOfSteel'
which is available as H.264 AVC, and then use a pre-built ffmpeg
container to transcode the stream to 5Mbps H.265 HEVC using the GPU.
```bash
TAG=${TAG:-latest}
mkdir $(pwd)/data
wget -O $(pwd)/data/TearsOfSteel.mp4 \
http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/TearsOfSteel.mp4
VIDEO=$(getent group video | sed -E 's,^video:[^:]*:([^:]*):.*$,\1,')
docker run \
--group-add ${VIDEO} \
--rm \
--device=/dev/dri \
-e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
-it \
--volume $(pwd)/data:/data \
intel-media-ffmpeg:${TAG} \
transcode TearsOfSteel.mp4 TearsOfSteel-5M.mp4
```
# Launch a shell in the container
The examples below are all assumed to be running in the container's environment:
```bash
TAG=${TAG:-latest}
VIDEO=$(getent group video | sed -E 's,^video:[^:]*:([^:]*):.*$,\1,')
docker run \
--group-add ${VIDEO} \
--rm \
--device=/dev/dri \
-e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
-it \
intel-media-ffmpeg:${TAG} \
shell
```
## Decode
AVC (H.264) video decode and save as YUV 420P raw file:
**NOTE**: Run the following in the container launched previously.
```bash
IN_FILE=AUD_WM_E.264
OUT_FILE=AUD_MW.yuv
ffmpeg \
-hwaccel qsv \
-qsv_device ${QSV_DEVICE:-/dev/dri/renderD128} \
-c:v h264_qsv \
-i /data/"${IN_FILE}" \
-vf hwdownload,format=nv12 -pix_fmt yuv420p \
-y \
/data/"${OUT_FILE}"
```
## Encode
Encode a 10 frames of 720p raw input as H264 with 5Mbps using VBR mode:
**NOTE**: Run the following in the container launched previously.
```bash
IN_FILE=AUD_MW.yuv
OUT_FILE=AUD_MW_E.h264
ffmpeg \
-loglevel debug \
-init_hw_device vaapi=va:${QSV_DEVICE:-/dev/dri/renderD128} \
-init_hw_device qsv=hw@va \
-filter_hw_device hw \
-f rawvideo \
-pix_fmt yuv420p \
-s:v 176x144 \
-i /data/"${IN_FILE}" \
-vf hwupload=extra_hw_frames=64,format=qsv \
-c:v h264_qsv \
-b:v 5M \
-frames:v 10 \
-y \
/data/"${OUT_FILE}"
```
## Transcode
### AVC (H.264) => HEVC (H.265) with 5Mbps using VBR
**NOTE**: Run the following in the container launched previously.
```bash
IN_FILE=AUD_MW_E.264
OUT_FILE=AUD_MW_E.hevc
ffmpeg \
-loglevel debug \
-hwaccel qsv \
-qsv_device ${QSV_DEVICE:-/dev/dri/renderD128} \
-c:v h264_qsv \
-i /data/"${IN_FILE}" \
-c:v hevc_qsv \
-b:v 5M \
-y \
/data/"${OUT_FILE}"
```
### 1:N transcoding
**NOTE**: Run the following in the container launched previously.
```bash
IN_FILE=AUD_MW_E.264
OUT_FILE=AUD_1N_
ffmpeg \
-hwaccel qsv \
-qsv_device ${QSV_DEVICE} \
-c:v h264_qsv \
-i /data/"${IN_FILE}" \
-filter_complex "split=2[s1][s2]; \
[s1]scale_qsv=1280:720[o1]; \
[s2]vpp_qsv=framerate=60[o2]" \
-map [o1] -c:v h264_qsv -b:v 5M /data/"${OUT_FILE}-5M.mp4" \
-map [o2] -c:v h264_qsv -b:v 4M /data/"${OUT_FILE}-4M60FPS.h264"
```
# Appendix A: Multicard
Most of the filters and drivers for ffmpeg will default to connecting to
/dev/dri/renderD128.
If you have multiple cards, the card you want to connect to might be exposed
on a different render interface.
You can configure which interface is used by setting the QSV_DEVICE environment
variable prior to running intel-docker (or by passing -e QSV_DEVICE to docker
if you run it manually.)
You can find out the correct path for your Intel Graphics card by running:
```
ls -l /dev/dri/by-path/pci-*$(lspci | grep Intel.*Graphics | cut -d " " -f1)*
```
If the interface is on /dev/dri/renderD129, set QSV_DEVICE as follows:
```
export QSV_DEVICE=/dev/dri/renderD129
```