1
0
intel-media-ffmpeg/README.md
James P. Ketrenos eacc1dc38a Moved 'developing' section into docs/developing.md
Signed-off-by: James P. Ketrenos <james.p.ketrenos@intel.com>
2019-09-25 16:26:56 -07:00

209 lines
4.9 KiB
Markdown

# Intel Media FFMPEG Transcode Container
This project hosts a container demonstrating the use of ffmpeg
using GPU offload for transcode operations.
The Dockerfile itself is constructed from templates/* and Dockerfile.solution,
and provides a multi-stage Docker container with the final container
being a minimal run-time installation on top of the base OS.
# Usage examples
## Getting the container
You can pull the container from Harbor:
```bash
docker pull amr-registry.caas.intel.com/vtt-osgc/solutions/intel-media-ffmpeg
docker tag amr-registry.caas.intel.com/vtt-osgc/solutions/intel-media-ffmpeg intel-media-ffmpeg
```
or build it yourself:
```bash
docker build . -t intel-media-ffmpeg
```
## Verify hardware access
```bash
docker run \
--rm \
--device=/dev/dri \
-e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
-it \
intel-media-ffmpeg \
info
```
The above will provide information about the software
in the container, as well as the detected Intel graphics
hardware.
If you are in a multicard environment, see Appendix A.
## Test hardware accelerated FFMPEG media operations
First download test content into ./media, then launch
the Docker container mounting that path to the /media
volume, running the 'test' command.
NOTE: The test media stream is currently hard coded to
expect the name AUD_WM_E.264 in the container.
```bash
mkdir $(pwd)/media
wget -O $(pwd)/media/AUD_MW_E.264 \
https://fate-suite.libav.org/h264-conformance/AUD_MW_E.264
docker run \
--rm \
--device=/dev/dri \
-e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
--volume $(pwd)/media:/media \
-it \
intel-media-ffmpeg \
test
```
The above will:
1. Download a test content file from fate-suite.libav.org into $(pwd)/media
2. Instantiate the 'intel-media-ffmpeg' container
3. Perfom the following tests:
1. decode AUD_MW_E.264 to AUD_MW.yuv
2. encode AUD_MW.yuv to AUD_MW_E.h264
3. transcode AUD_MW_E.264 to AUD_MW_E.hevc
4. transcode AUD_MW_E.264 to two streams at once, AUD_1N-5M.h264 and AUD_1N-4M60FPS.h264
Once completed, you can check the contents of $(pwd)/media for the following files:
```
AUD_MW_E.264
AUD_MW.yuv
AUD_MW_E.h264
AUD_MW_E.hevc
AUD_1N-5M.h264
AUD_1N-4M60FPS.h264
```
## Launch a shell in the container
The examples below are all assumed to be running in the container's environment:
```bash
docker run \
--rm \
--device=/dev/dri \
-e QSV_DEVICE=${QSV_DEVICE:-/dev/dri/renderD128} \
-it \
intel-media-ffmpeg \
shell
```
## Decode
AVC (H.264) video decode and save as YUV 420P raw file:
```bash
IN_FILE=AUD_WM_E.264
OUT_FILE=AUD_MW.yuv
ffmpeg \
-hwaccel qsv \
-qsv_device ${QSV_DEVICE:-/dev/dri/renderD128} \
-c:v h264_qsv \
-i /media/"${IN_FILE}" \
-vf hwdownload,format=nv12 -pix_fmt yuv420p \
-y \
/media/"${OUT_FILE}"
```
## Encode
Encode a 10 frames of 720p raw input as H264 with 5Mbps using VBR mode:
```bash
IN_FILE=AUD_MW.yuv
OUT_FILE=AUD_MW_E.h264
ffmpeg \
-loglevel debug \
-init_hw_device vaapi=va:${QSV_DEVICE:-/dev/dri/renderD128} \
-init_hw_device qsv=hw@va \
-filter_hw_device hw \
-f rawvideo \
-pix_fmt yuv420p \
-s:v 176x144 \
-i /media/"${IN_FILE}" \
-vf hwupload=extra_hw_frames=64,format=qsv \
-c:v h264_qsv \
-b:v 5M \
-frames:v 10 \
-y \
/media/"${OUT_FILE}"
```
## Transcode
### AVC (H.264) => HEVC (H.265) with 5Mbps using VBR
```bash
IN_FILE=AUD_MW_E.264
OUT_FILE=AUD_MW_E.hevc
ffmpeg \
-loglevel debug \
-hwaccel qsv \
-qsv_device ${QSV_DEVICE:-/dev/dri/renderD128} \
-c:v h264_qsv \
-i /media/"${IN_FILE}" \
-c:v hevc_qsv \
-b:v 5M \
-y \
/media/"${OUT_FILE}"
```
### 1:N transcoding
```bash
IN_FILE=AUD_MW_E.264
OUT_FILE=AUD_1N_
ffmpeg \
-hwaccel qsv \
-qsv_device ${QSV_DEVICE} \
-c:v h264_qsv \
-i /media/"${IN_FILE}" \
-filter_complex "split=2[s1][s2]; \
[s1]scale_qsv=1280:720[o1]; \
[s2]vpp_qsv=framerate=60[o2]" \
-map [o1] -c:v h264_qsv -b:v 5M /media/"${OUT_FILE}-5M.mp4" \
-map [o2] -c:v h264_qsv -b:v 4M /media/"${OUT_FILE}-4M60FPS.h264"
```
After joining the template/* pieces together, the file
**Dockerfile.solution** is then added to the Dockerfile with
environment substitution.
# Appendix A: Multicard
Most of the filters and drivers for ffmpeg will default to connecting to
/dev/dri/renderD128.
If you have multiple cards, the card you want to connect to might be exposed
on a different render interface.
You can configure which interface is used by setting the QSV_DEVICE environment
variable prior to running intel-docker (or by passing -e QSV_DEVICE to docker
if you run it manually.)
You can find out the correct path for your Intel Graphics card by running:
```
ls -l /dev/dri/by-path/pci-*$(lspci | grep Intel.*Graphics | cut -d " " -f1)*
```
If the interface is on /dev/dri/renderD129, set QSV_DEVICE as follows:
```
export QSV_DEVICE=/dev/dri/renderD129
```